Challenges in Transitioning from Co-Simulation to
Practical Application: A Case Study on Economic
Emission Dispatch in a Greenhouse Compartment

Christian Skafte Beck Clausen ![0000-0003-3118-7253] ' Sehastian Lehnhoff2[0000-0003-2340-6807]
Jan Soren Schwarz?[0000-0003-0261-44121 "By Ngrregaard Jorgensen !10000-0001-5678-66021 ap g
Zheng Grace Ma '10000-0002-9134-1032]

' SDU Center for Energy Informatics, Maersk Mc-Kinney Moeller Institute, The Faculty of En-
gineering, University of Southern Denmark, Odense, Denmark
csbc@mmmi.sdu.dk
bnj@mmmi.sdu.dk
zma@mmmi.sdu.dk
2 OFFIS — Institute for Information Technology, Oldenburg, Germany
sebastian.lehnhoff@offis.de
jan.soeren.schwarz@offis.de

Abstract. Co-simulation is a widely applied method used to analyze the behavior
of complex, interdisciplinary, and integrated cyber-physical control systems. De-
spite its prevalence, the transition from co-simulated control systems into practi-
cal applications is not discussed as much in the literature. This leaves a gap in the
literature because practitioners may not be aware of these challenges. This paper
aims to uncover and discuss some of the challenges that arise in the transition
from a co-simulated control system to a practical application.

A case study on economic emission dispatch in a Danish industrial greenhouse
compartment serves as the fundament in studying these challenges. Economic
emission dispatch is a method that can be used in a closed-loop arrangement to
decrease costs and emissions of multiple energy production units. The case study
is first implemented as a co-simulation which is subject to a subsequent practical
implementation. The co-simulation implementation is governed by the open-
source framework mosaik that is used extensively in smart grid applications. In
contrast, the practical implementation is not governed by mosaik due to architec-
tural design discrepancies. A key feature of the study is the use of software-in-
the-loop, which means that the controller being tested is the actual software in-
tended for deployment.

The highlighted challenges include that the core abstractions (master algorithm,
scenario-script, and protocol) of the co-simulation framework cannot be trans-
ferred to an operational context due to design discrepancies. Despite these chal-
lenges, the co-simulation can still serve as a baseline for comparing functional
performance metrics during the transition.

Keywords: Economic dispatch, co-simulation, software-in-the-loop, SIL,
cyber-physical system, transition, challenges, greenhouse, simulation-to-reality

gap

mailto:csbc@mmmi.sdu.dk
mailto:zma@mmmi.sdu.dk

1 Introduction

The transition to sustainable energy solutions necessitates the adoption of advanced
digital technologies (IEA, 2023). A prevalent method in this context is co-simulation,
which integrates various simulation models to analyze the behavior of complex, inter-
disciplinary, and integrated cyber-physical control systems (Gomes et al., 2018; Van
Der Meer et al., 2017; Vogt et al., 2018). Despite its widespread use in studying novel
control strategies in simulated environments, there is limited literature exploring its
transition to practical control applications (Samad et al., 2020). This forms a gap be-
tween researchers that develop novel control strategies and practitioners that implement
them. This is a problem because practitioners may not be aware of the challenges and
underlying assumptions of co-simulation when transferring this technology to practical
applications. The general problem is that co-simulation technology is typically de-
signed for the purpose of development, testing, and validation in a context that may not
reflect operational constraints. Eventually, practitioners may encounter implementation
issues that remain hidden until late in development such as integration problems, sys-
tem interoperability (protocols), concurrency, synchronization, performance and re-
source constraints. The goal and contribution of this paper is to investigate and discuss
these challenges through a case study. A key feature of the study is the use of software-
in-the-loop, which means that the controller being tested is the actual software intended
for deployment. The study aims to assist researchers in transitioning their co-simula-
tions to practical applications. The motivation is that there is a need to develop a testing
approach that mirrors real-world design conditions, because existing approaches are
limited in this aspect (Alleyne et al., 2023; Van Der Meer et al., 2017). To achieve this,
two implementations of a case study on closed-loop economic emission dispatch in a
Danish greenhouse compartment are compared by their design and results. The co-sim-
ulation implementation is governed by the co-simulation framework mosaik (Ofenloch
et al., 2022; Steinbrink et al., 2019), while the practical implementation is oriented to-
wards operational constraints and is therefore not governed by mosaik. Section 1.1 in-
troduce the background and related work for undertaking the study. Section 2 describes
the research method. Section 3 showcases the case study with the local energy system
of an industrial greenhouse compartment. Section 4 details the design and implementa-
tion. Section 5 presents the results of the study. Section 6 discusses the identified chal-
lenges and limitations between the two implementations and Section 7 concludes the
study and provides suggestions for future work.

1.1 Background and related work

This paper extends the previous work of economic emission dispatch (EED) within an
industrial greenhouse compartment (Clausen et al., 2024a). EED is an approach used
to determine the optimal output of multiple generation units to meet the demand at the
lowest possible cost and emissions, subject to operational constraints (Chowdhury &
Rahman, 1990; Hassan et al., 2022; Mahdi et al., 2018; Rizk-Allah et al., 2023). In the
previous work, the EED was defined as a multi-objective optimization problem, and
more concretely, implemented as a Multi-Objective Genetic Algorithm (MOGA)

(Coello et al., 2007). The multi-objective optimization extended EED by considering
additional objectives, such as minimizing CO2 and meeting the energy demands within
the greenhouse compartment. It was shown that this approach can provide more flexible
management of the trade-offs between different business goals, providing a set of Pa-
reto-optimal solutions from which decision-makers can select the most suitable option
based on their priorities. However, the previous work did not couple the optimized EED
outputs to the greenhouse’s local energy system to form a cyber-physical control sys-
tem. This paper advances the realization of such as system.

A cyber-physical system (CPS) consists of collaborating computational entities con-
nected with the Internet, the physical world and its on-going processes (Monostori,
2014). A closed-loop CPS observes and controls physical processes in a continuous
loop to maintain predictable and stable operation of the system. A system that controls
energy resources is classified as a CPS because software and physical processes are
undeniably coupled. In EED, the closed-loop control maintains optimal operation by
dynamically adjusting energy resource dispatch in response to operational changes like
energy demands, markets, and forecasts. This adaptive capability is essential for man-
aging the variability and uncertainty inherent in many modern energy systems like EED
for greenhouses.

Testing an EED application for greenhouses is non-trivial because of the inherent
dynamics like weather, energy demands, seasonal variation, economics, technological
integration, yield impact, and CO2 emissions. These conditions make it unrealistic to
develop such system in the field without preliminary testing methods. Simulation-based
methods like co-simulation are suitable for this task.

Co-simulation is an approach that utilize diverse simulation models by connecting
them to test their emergent behavior in a scenario prior to field-testing. In the energy
domain, co-simulation has been used to test the performance by simulating the complex
energy systems such as smart grids (Vogt et al., 2018). At early stages, a co-simulation
can serve to demonstrate a conceptual design using coarse simulation components. At
this stage, the control component is typically implemented within the modeling envi-
ronment, referred to as Model-in-the-loop (MIL). However, a co-simulation can be
gradually refined by increasing its fidelity, which is the degree to which it mirrors the
real system, by exchanging models with more detailed ones. Substituting the control
component with the actual control software implementation is called Software-in-the-
loop (SIL) (Clausen et al., 2024b). SIL testing is focused on the software implementa-
tion to ensure that the software behaves correctly when interacting with other compo-
nents. Further in-the-loop extensions include processor-in-the-loop (PIL), power-hard-
ware-in-the-loop (PHIL) and hardware-in-the-loop (HIL), all which gradually moves
the simulation closer to real-world operating conditions (Clausen et al., 2024b;
Maniatopoulos et al., 2017). The literature offers limited research on the progressive
refinement process, evolving from early-stage co-simulation to field-tested application.
For this paper, SIL is sufficient because this is the first step towards the realization of
EED.

2 Research Method

This study combines EED, co-simulation, and SIL testing approaches to advance the
realization of a closed-loop CPS for optimal energy dispatch in greenhouses. A case
study forms the basis for designing and implementing two different architectures with
identical functionality — a co-simulation implementation and a practical implementa-
tion. The co-simulation implementation is used to deduct a functional baseline to verify
and compare the practical implementation. The purpose of the practical implementation
is to reflect the operational design constraints at a higher fidelity through SIL testing.
If the output from each architecture is similar, confidence in the practical architecture
increases. The research approach is illustrated in Fig. 1.

Implement scenario m

Execute scenario &
mosaik co- s\mu\allon

collect data

context
Case study }—f Define scenario A"a‘yzree:‘ufg"‘pa'e J_fnswss challenges J

Implement scenario |n Execule scenario &
a practical context collect data

Fig. 1. Illustration of the research method.

Both architectures have overlapping technological constraints. This is the case for the
simulation models and the optimization framework. The simulation models are reused
from a previous study of a greenhouse project (Yang, 2022). These simulation models
were developed in Dymola/Modelica and subsequently exported as Functional Mock-
up Units (FMUs) using the Functional Mock-up Interface (FMI) model exchange for-
mat. (Blochwitz et al., 2012). The FMI is an open standard, that ensures compatibility
and interoperability across tools, and therefore enables the models to be reused across
various simulation environments. An FMU is a package that implements the FMI stand-
ard, and it encapsulates its dynamic model and, in some cases, the solver. The optimi-
zation framework used within the controller was developed at the SDU Center for En-
ergy Informatics and employs a multi-objective optimization algorithm (Clausen &
Serensen, 2021). Similar multi-objective optimization frameworks are available, such
as jMetal and MOEA Framework, but they lack certain features i.e., (i) a decision-
making module that can select ideal solutions from the Pareto front and (ii) integration
with FMI/FMU. These features were demonstrated in a previous study (Clausen et al.,
2024a).

Moving on to the technological discrepancies between the two architectures. The co-
simulation implementation is governed by the mosaik co-simulation framework
(Steinbrink et al., 2019). Mosaik is a renowned open-source co-simulation framework
in Python, that has been used extensively in analyzing smart grid applications
(Ofenloch et al., 2022; Steinbrink et al., 2019). Mosaik solves hard design problems
like configuration, deployment, dependencies, concurrency, and interoperability in-
cluding synchronization, protocol, and interfacing. Furthermore, it features a user-
friendly Application Programming Interface (API) and can integrate simulators imple-
mented in various programming languages and has FMI/FMU support. Lastly, mosaik

supports co-simulation of closed-loop control. The HELICS co-simulation framework
was also considered but is more complex to set up, with unnecessary extra features for
this research (Hardy et al., 2024).

The practical implementation uses the NATS.io open-source middleware to achieve
low-latency real-time interoperability between components (Sharvari & Sowmya,
2019). NATS.io exchanges data segmented in messages and features multimodal
sync/async communication paradigms like streams, event-based, request-based, distrib-
uted key/value pairs, and microservices. Similar communication middleware could be
used instead like MQTT, gRPC, RSocket, and AMQP. However, NATS.io's support
for multiple communication paradigms is appealing because it meets a broad range of
communication needs without requiring the use of different technologies. Furthermore,
NATS.io is part of the Cloud Native Computing Foundation (CNCF) ensuring commu-
nity support, vendor neutrality, and a high degree of interoperability with other systems.

3 Case Study: Economic Emission Dispatch in an Industrial
Greenhouse Compartment

The case study involves EED in an industrial greenhouse compartment located in Den-
mark. The local energy system of the greenhouse compartment is illustrated in Fig. 2.
The local energy system consists of multiple energy sources: A gas boiler (GB), a heat
pump (HP), district heating (DH), a combined heat- and power plant (CHP), and the
distribution grid. The produced heat is stored in a thermal energy storage (TES) which
enables strategic utilization because the TES can be used as a buffer in scenarios of
fluctuating energy prices and CO2 emissions. The compartment is connected to the
distribution grid from where it consumes all its electrical power. The power produced
by the CHP is sold to the distribution grid due to national regulations. Each of the en-
ergy sources can be controlled individually through setpoint control variables.

Load factor, ﬁ -
GB ’
On/off - Setpaint control

Heat request

Load factor, _

Greenhouse
Distribution grid]

Fig. 2. The local energy system of the greenhouse compartment.

3.1 High-level View of the Cyber-Physical Control System

A controller is assigned the responsibility of computing the optimal setpoints. Fig. 3
depicts the bidirectional relationship between the controller and the local energy sys-
tem. This relationship forms a closed control loop, where the controller receives the

recent state of the energy system, computes optimal setpoints, and sends the setpoints
to the local energy system.

Closed-loop control)

]) £]
«Controller» setpoints «Process»
MOGA < State LocalEnergySystem

Fig. 3. A high-level view of the closed-loop CPS.

The controller incorporates an economic dispatch algorithm formulated as a Multi-Ob-
jective Problem (MOP) and implemented as a MOGA. The MOP aims at minimizing
two primary objectives: (i) the total costs, and (ii) the total CO2 emissions while satis-
fying both the greenhouse’s heat- and electricity demands, and the physical constraints
of the system. The formulation of the MOP is described in Section 3.2. The MOP min-
imize the objectives over a future period, which requires that the algorithm has access
to both forecast data and a model that can estimate the behavior of the local energy
system. In other words, the forecast data and the energy system models are utilized to
evaluate candidate setpoint vectors against the objectives. The closed control loop pro-
cedure is formulated in Algorithm 1. The algorithm starts with the initial state of the
local energy system, and its goal is to produce a vector of setpoints and it operates
within an endless control loop (line 1). Firstly, the algorithm retrieves forecasts for the
greenhouse’s heating and electricity demands (line 2). It also gathers forecasts for en-
ergy prices, including electricity, gas, and district heating (line 3). Additionally, it col-
lects forecasts for CO2 emissions related to these energy sources (line 4). These fore-
casts along with the current state (line 5) are used to initialize the set of objectives that
guide the optimization process (line 6). The optimization process starts with an empty
Pareto frontier intended for containing non-dominated setpoints (line 7) and iteratively
generate new candidate setpoints (line 9). The candidate setpoints are evaluated against
the objectives (line 10) and the non-dominated setpoints are added to the Pareto frontier
(line 11). This process is iterated until the termination criterion is reached. The termi-
nation criterion is bound to a fixed deadline of 30 minutes. This deadline can be tuned
but is kept relatively large partly because of the inertia of the local energy system and
to allow the MOGA to converge towards optimality. After the optimization loop con-
cludes, a decision-making strategy is employed to select the most suitable compromise
solution from the Pareto frontier (line 13). This selected compromise represents the
vector of setpoints that will be used to control the local energy system (line 14). The
entire process repeats, continuously adapting to new forecasts and system states to
maintain optimal control of the local energy system.

ALGORITHM 1: ECONOMIC EMISSION DISPATCH CLOSED-LOOP CONTROL
Input: Initial state of the local energy system S;;
Output: A vector of setpoints
1 while (controlling)
2 Fheat, Felectricity < retrieve greenhouse heat- and electricity demands forecasts
3 Fprice electricity, Fprice gas, Fprice_district heating— retrieve energy prices forecasts
4 Froz electricity, Feoz gas, Feoz district heating < retrieve CO2 emissions forecasts
5 state < retrieve the current state of the local energy system
6
7
8

objectives « initializeObjectives(forecasts, state)
pf< empty set
while optimization not terminated do

9 candidates < generate candidate setpoints

10 candidates’ < evaluate(candidates, objectives)
11 pf < updateParetofront(pf candidates’)

12 end while

13 selectedCompromise « decisionMaker(pf strategy)
14 return selectedCompromise

15 end while

Each objective estimates the future behavior of the local energy system by exploiting
models and forecast data. The length of this future is determined by a variable-sized
sliding window. The window size can vary from 12 to 35 hours which reflects the day-
ahead spot market of electricity prices provided by Nord Pool (NordPoolGroup) and
the day-ahead CO2 emissions provided by the Danish agency Energinet (Energinet).

3.2 Local Energy System Models

This section presents the models of the local energy system. The models are reused
from previous work (Clausen et al., 2024a; Yang, 2022). The local energy system was
implemented in Dymola/Modelica and exported as FMI 2.0 compatible FMUs. Fig. 4
shows a block diagram of the composed models, their relationships, and the input/out-
put variables of each model. A description of the models input/output variables are
provided in Table 1. The models were derived using grey-box modeling techniques
based on on-site measurements from a commercial greenhouse in Denmark. In con-
trary, white-box models can provide high fidelity but are computationally intensive,
and black-box modeling depend on high-quality training data, which were not availa-
ble. The grey-box models approximate the system’s response by tuning theoretical
models with collected measurements. The system dynamics were simplified to linear
equations, and the thermal energy storage does not consider temperature gradients or
heat loss. These dynamics increase model fidelity at increased computational costs.

Pe,chp
LFenp|combined heat & power| mcp,
Model
Ph,chp
Ph.chp
P,
Ph,gb h.gb T,
E oy o eaeaes TES
Lng Gas boiler P
> Model Moy veeeens h.hp
L} P Thermal energy storage
dh Model
LF, P Pgn E»
g
hp h.hp — 5
|—nhp g, .o |
Heat pump H Tini
Tsource Model P hp
Ph,req District heating Pan)
> Model

Fig. 4. Block diagram of the compartment’s local energy system (Clausen et al., 2024a).

The input vector used to instantiate the energy system is defined by

Sinit = [LFchp' Lng' Lth' Tsources Tinits Pdh,reqt Pgh] (1)

from which the output of each model is calculated. The heat output vector Py = [Ph,cip,
Phgb, Phip, Pan] s used as input parameters of the TES. The outputs Eou: = [Pe chp, Mchp,
Mgp, Pehp, Pan] are used to calculate the economics of the energy system in terms of
costs and CO, emissions.

Table 1. I/O structure of the FMU models.

Initial
Model /O Symbol Unit Range value Description
Input LFenp [-] [0, 1] 0.0 Part load ratio of the CHP
Output Phchp MW] [0,2.72] 90 Heat power produced by the
CHP.
CHP Output Pecip [MW] [0,1.28) 00 Electric power produced by the
CHP.
Output Mepp [kg/s] [0,0.11] 0.0 Natural gas mass flow rate con-
sumed by the CHP.
Input LF,, [-] [0, 1] 0.0 Part load ratio for the gas boiler.
GB Output Ph o [MW] [0, 7] 0 Heat power produced by the GB.
Output Mgy [kg/s] [0,0.194] 0.0 Natural gas mass flow rate con-
sumed by the gas boiler.
Input LFy, [-] Oorl 0 Load factor of the HP model.
(binary) Off=0, On=1.
Hp Input Tsource [°C] [10, 30] 15 Temperature at the inlet of the
evaporator of the HP.
Output Phmw [kW] [0, 500] 0 Heat power produced by the HP.
Output Penp [kW] [0, 125] 0 Electricity consumed by the HP.
DH Input P req [MW] [0, 6] 0.0 Requested heat from the district

heating network.

Output Pan [MW] [0,5.4] 0.0 Obtained heat from the district
heating network
(90% efficiency).
Input Phctp [MW] [0,2.72] 0.0 Heat power produced by the
CHP.
Input Pan (MW] [0,5.4] 0.0 Obtained heat from the district
heating network
(90% efficiency).
Input Pumw [kW] [0, 500] 0 Heat power produced by the HP.
TES Input Phgb [MW] [0, 7] 0 Heat power produced by the GB.
Input Pan [MW] [0, 10] 0 Greenhouse heat demand.
Input Tinit [°C] [43.96, 50.0 The initial temperature of the
79.84] thermal energy storage (TES).
Output Tres [°C] [43.96, 50.0 Water temperature of the TES.
79.84]
Output Qres [MWh] [0, 64.4] 10.84 Stored energy in the TES.

3.3 Multi-Objective Problem Definition

This section presents the MOP definition of the EED optimization that are reused from
(Clausen et al., 2024a). The energy dispatch schedule is represented as a decision vector
that contains the energy systems load factors for each instant in the schedule. The sched-
ule is a prescription of how to operate the facility over an extended period, and there-
fore, the subvector describing components at index 7 = 0 holds the setpoints that are
actuated next.

S =[Ci, Ciy1y +r Cpy Gi, Gigny ooey Gy Hyy Hig g, ooy Hyyy Dy, Dy, oo, Dy] 2)

where S'is the schedule, 7is an instant, n is the number of instants, Cis the CHP load
factor, G is the GB load factor, A is the HP load factor and D is the heat request to the
DH provider. The number of instants 72 is dependent on the length of the forecast prog-
nosis. The optimization problem is subject to minimizing the costs and CO, emissions
of the schedule:

min O.os¢ (S) = XiL €OStyqs; + COSty; + COStgp; — incomeg,; 3)
min O¢g,(S) = Xit1 C02445; + €024 + CO24p; 4

where costgas i 1s the price of gas consumed in the instant, cost.;; is the price of electricity
consumed in the instant, and costa; is the price of district heating consumed in the
instant. The CHP produces electricity which needs to be deducted from income,;; in the
instant. CO2;; is the emissions of gas consumed by the CHP and GB. CO2,;; is the
emissions of electricity consumed by the HP. CO24,; is the emissions caused by district
heating.

The optimization is subject to the following objective space constraints:

Celectricity (S) =Vies: Pgh,i + Pe,hp,i < Pgrid,capacity (5)

Crps(8) = Vi€ S : Tregsmin < Tresi < Tresmax (6)

10

Celectricin(S) states that the greenhouse power demand and the HP power consumption
must not exceed the grid capacity in any instant. Crgs(S) states that the temperature of
the TES must be within the minimum and maximum values in any instant.

The optimization is subject to the following decision space constraints to reduce the
size of the decision space.

Cenp(S) = VC; €S:(0<C, <1)A (C;mod C, = 0) (7)
Cop(S) = VG, €S5: (0 <G; <1)A (G;mod G, = 0) (8)
Cpu(S) = VD, €S+ (0 <D; < Dypgy) A (D; mod D, = 0) 9)
Cup(S) = VH;€S: H;=0VH =1 (10)

Ccup(S) states that the load factor C; must be between 0 and 1 while being divisible by
the resolution C.. Cgs(S) and Cpu(S) have similar properties but with separate resolu-
tions G, and D,. Cyp state that the load factor H; must be exactly 0 (turned off) or 1
(turned on).

The TES was configured with an initial temperature 7;; to enable immediate flexible
use. However, it must not be economically feasible to drain the TES completely in the
last instants of the schedule as the optimization would regard the initial TES contents
as costless energy. Therefore, an additional constraint was created to avoid this case:

CTES_end_temperature (S) =Vies: Tinit < TTES,n (1 1)

where Tin is the initial temperature of the TES and T7zs, is the temperature in the last
instant.

34 Scenario

The scenario is based on forecasts represented as several time series with hourly inter-
vals. All input data were retrieved for the two-day period April 18" to April 19%, 2023.

The time series in the top of Fig. 5 shows the greenhouse’s electricity and heat de-
mands. The energy demands are based on optimal climate and historical energy con-
sumption records (Qu, 2023).

The time series in the middle of Fig. 5 shows the energy prices for electricity, natural
gas, and district heating. The electricity wholesale price signal was retrieved from Nord
Pool in the Danish area DK1 and tariffs were retrieved from Energinet. The gas price
signal was retrieved from the next day's index of the Exchange Transfer Facility (ETF)
at the European Energy Exchange (EEX).

The time series in the bottom of Fig. 5 shows the CO2 emissions for electricity,
natural gas, and district heating. The CO, emissions for electricity are available in a 5-
minute resolution at Energinet. The 5-minute resolution was aligned with the other
forecasts by aggregating the signal into an hourly resolution. CO; emissions for district
heating are declared as a yearly average and were retrieved from the Danish provider
Fjernvarme Fyn. The CO; emissions for gas are estimated to be 204 kg CO, / MWh by
the Danish Energy Agency.

11

Forecast [MWh]
IS

' e [] M

00:00 ! 0200‘04'00‘0600‘0300 ! 10:00 !]200‘ 14:00 ! 16:00 !]800‘2000 ! 2200‘00'00‘0200 ! 0400‘0600‘0800 ! 1000‘ 12:00 ! 1400‘]6'00 ! 18:00 ! 2000‘2200‘0000
Forecast slot [h]

150
100 ’_,_,“; l price
w0 M Gas price

0
00:00 ! 02:00 ! 04:00 ! 06:00 ! 08:00 ! 10:00 ! 12:00 ! 14:00 ! 16:00 ! 18:00 ! 20:00 ! 22:00 ! 00:00 ! 02:00 ! 04:00 ! 06:00 ! 08:00 ! 10:00 ! 12:00 ! 14:00 ! 16:00 ! 18:00 ! 20:00 ! 22:00 ! 00:00
Forecast slot [h]

Forecast [Euro/MWh]

50 T
00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 00:00
Forecast slot [h]

Forecast [kg*CO2/MWh]

Fig. 5. The two-day forecasts used for the scenario.

4 Design and Implementation

4.1 Co-simulation implementation with mosaik

The closed-loop co-simulation was implemented in the mosaik co-simulation frame-
work (Steinbrink et al., 2019). Mosaik provides the fundamental API and components
for constructing an executable co-simulation of the case study including:

The Scenario script. The scenario script is a Python file responsible for instantiating
simulators, configuring and connecting them through their exposed input/output attrib-
utes. Internally, mosaik constructs a data flow graph — a directed acyclic graph of the
interdependent simulators including predecessors and successors.

The Component API. Mosaik assumes that a simulator is an independent piece of
executable software that implements a simulation model. The component API is a sim-
ulator interface definition that mosaik uses to communicate with each simulator and
coupling them through functions like create, step, and getData. Each simulator
provides an implementation of the interface, and it may be exposed directly through
Python (within the same process), or through JSON over TCP/IP (external simulation
process). It is necessary to provide implementations of this interface if they do not al-
ready exist within the mosaik codebase. Mosaik provides implementations for e.g.
FMI/FMU integration and exporting data in CSV format.

The Simulation manager. The simulation manager is responsible for establishing and
maintaining the connections between mosaik and each simulator.

The Scheduler. The scheduler utilizes a master algorithm to coordinate the execution
and data exchange of all simulators within the scenario. This master algorithm employs
centralized coordination and synchronization mechanisms. Specifically, mosaik man-
ages the global simulation time and instructs each simulator to advance accordingly,

12

subsequently retrieving the resulting data. Consequently, all data exchanges are medi-
ated through mosaik.

The realized co-simulation is illustrated in a component diagram in Fig. 6. Each
component, except the scheduler, provides an implementation of the mosaik Compo-
nent API. From the diagram the following components are shown.

Scheduler. This component functions as described in the mosaik framework.

MOGA. This is the Java-based MOGA controller. The actual controller was adapted
to be interoperable with mosaik by extending the abstract Java class de.offis.mo-
saik.api.Simulator and overriding its abstract methods init (..), cre-
ate(..), step(..),and getData (..).

CSVWriter. This is a default component within the mosaik code base. It functions as
an observer to export all relevant simulation into a CSV-file for later analysis.
Forecasts. This component contains a Python forecast simulation model that provides
data in variable-sized sliding window as previously described in Section 3.1.

Local energy system. This package resembles the local energy system and contains
FMI/FMU compatible simulation models of the CHP, GB, HP, DH, and TES. Mosaik
provides an adapter to facilitate FMI/FMU compatibility.

Mosaik i ion archi =)

]
«Simulator»

N CSVWriter
PythonAdapte

]]]
«Controller» O) «mosaik» O «Simulator»
MOGA Scheduler Forecasts
JavaAdapter honAdapte!

8

@--ap(e

Local energy$ystem

«FMU»
TES

«FMU»
GB

«FMU»
DH

«FMU»
HP

«FMU»
CHP

i ‘

i ‘

i ‘

i ‘

i ‘

Fig. 6. The co-simulation composition in mosaik.

The simulators are synchronized on different timescales. The co-simulation’s step size
follows wall-clock time because the execution of the MOGA controller’s termination
criterion of 30 minutes. The forecasts and FMI/FMU simulators execute faster than
their step sizes, so their outputs remain valid until the next simulation step. The
FMI/FMU simulators have a 1-minute step size because their output values are col-
lected at a 1-minute sample rate by the event-based CSV Writer component.

The first few synchronization points of the running example are shown in the timing
diagram of Fig. 7.

13

Forecast Forecast

‘ Init Controller Controller Controller
\ J
Lacal Local Local Local >< Local Local
Energy Energy Energy Energy Energy Energy
System System System System System System

init 0[s] 60 [s] 120 [s] 0.5[h] 1.0[h] 1.5[h]

Fig. 7. A timing diagram showing the synchronization of each simulator in mosaik.

For simplicity, CSWWriter component is not shown, and all FMI/FMUs are aggregated
inside the local energy system. Each simulator is configured as time-shifted to enable
concurrent execution of the processes as would be the case in the real world. Because
each simulator is time-shifted they must be initialized with initial input values. All sim-
ulators begin their execution path at time t = 0. The local energy system subsequently
advances in 1-minute time steps, and the output values are collected by the CSV Writer.
The closed-loop between the local energy system and the controller is established be-
cause the outputs of each simulator are used by the other in its next time step. This is
indicated by the crossing zigzag data flow between the controller and the local energy
system. The forecasts are updated hourly, and therefore new forecast data is fed to the
controller at an hourly rate shown at t =0 [s], t=1 [h], t =2 [h] in the diagram.

4.2 Practical design and implementation

A key aspect of the practical design and implementation is that it can serve as a skeletal
system. NATS.io serves as the integration fabric which enables loosely coupled com-
ponents to communicate in real-time through messaging. Components can be easily
added to the infrastructure to extend capabilities. For instance, when the local energy
system periodically publishes its state, it is straightforward to implement a logger com-
ponent that stores the state for monitoring and analysis. Additionally, the local energy
system exposes its state via request-response semantics when the controller requires
immediate access. Fig. 8 shows the composition of the practical implementation where
each component is connected to and communicates via NATS.io.

Practical composition)

i

«Subscriber»
Logger

«Service»
Forecasts

«Emulator»
LocalEnergySystem

«Controller»
MOGA

)

i

i

«Middleware»
NATS.io

Fig. 8. The practical composition of the closed-loop control system.

14

The component boundaries are similar to those in the co-simulation. For instance, the
controller remains an isolated component that uses models of the local energy system,
its actual state, and forecast data to compute optimal setpoints. Similarly, the forecast
data is treated as an isolated component that can be queried on demand. The local en-
ergy system is emulated as a single entity instead of separate entities (i.e., CHP, GB,
HP, DH, and TES). The emulator exposes an endpoint that can receive setpoints for all
these entities. This emulator can later be replaced with an adaptor that interacts with
the real system via Programmable Logic Controllers (PLCs). Internally, the emulator
simulates the behavior of the local energy system and periodically emits its state. All
components are connected over a TCP/IP network and have their clock synchronized
with the Network Time Protocol (NTP). The components reside on the same local area
network (LAN), which reduces latency between them. The forecast component aggre-
gates all relevant forecasts and exposes them uniformly over NATS.io. Messages are
JSON formatted for readability but can use any other string or binary-compatible for-
mat e.g. Protocol Buffers, MessagePack, etc. Fig. 9 shows a combined sequence dia-
gram of the interaction between the local energy system emulator and the controller.

«Middleware»
NATS.io

sd Economic dispatch system)

«Controller»
:MOGA

«Service»
‘Forecasts

«Emulator»
LocalEnergySystem
I

I
Local energy system emulator)

init and run emulator |

start FMU thread
|
FMU loop Tforever]

stepFMU(setpoints, stepSize = 1 [s])

i

publishstate)

sync()

start msg handler thread

Message handler _J (forever]

i

|
|
|
1)
|
|
|
|

alt [msg = setpoints] |

setpoints !

update setpoints |

I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
| state] |
|
|
|
|
L
|
|
|
I
|
oigt
|

q

request

tesTemperature, heatpumpTemperature (‘7

fesTemperature, healpumpTemperatre

|

onext][] |

|

Controller) |

init and run controller !
, 0t and run controler

| }

controlloop /" Iferever] |

|

requestForecasts(horizonLength)

4
o

[Tcasts .

forecasts |
|

requestEnergySystemState(),
tesTemperature, nea«pumprempemué &

tesTemperature, heatpumpTemperature

runOptimization(forecasts,
systemState,objectives,
mogaParameters)

[Teseres
L

on exit

|
),
1
|
|
|
T
|
|
|
|
|
|
T
|
1

| |
T h
| |
| |
| |
| |
| |
1 0y
T T
| |
1 1

Fig. 9. Sequence diagram of the economic emission dispatch system.

15

The emulator is initialized with two concurrent threads. The first thread is responsible
for continuously simulating the FMU and publishing the resulting state to NATS.io.
The FMU is advanced in 1 second intervals, and the execution time of the FMU must
be lower than 1 second to avoid drifting from wall-clock time. The sync () method
simply blocks until 1 whole second has passed. The second thread listens for incoming
messages and dispatches them accordingly. If the message contains a state request, the
current state of the local energy system is returned. If the message contains setpoints,
the internal FMU inputs are updated accordingly.

The controller executes within the first thread and contains an endless control loop.
The control loop fetches the forecasts by sending a request through NATS.io that is
forwarded to, and returned by, the forecasts service. The length of the forecasts varies
accordingly to the variable-size sliding window as previously described. Then the cur-
rent state of the local energy system is similarly requested through NATS.io. The
MOGA optimization is then started given the parameters which are read from a config-
uration file. The runOptimization (..) method is a blocking call that returns when
the termination criterion of 30 minutes has passed. The optimization returns the set-
points that were chosen based on the decision-making criteria which is the compromise
between total energy costs and CO2 emissions in the Pareto-front. Finally, these set-
points are published to NATS.io which are then received by the local energy system
emulator.

5 Results

This section presents the comparison of the two case study implementations. The com-
parison is based on an analysis of the functional behavior of the greenhouse energy
system in terms of the energy output and TES temperature response. Both experiments
were executed on a workstation with a 3.7 GHz (4.8 GHz Turbo) AMD Ryzen 9 5900X
12-core (24 threads) processor, 64 GB DDR4-3200 RAM, NVIDIA GeForce RTX
3060, and a Samsung 970 EVO NVMe drive. The experiments were configured with
identical initial conditions in the local energy system, forecasts, and optimization pa-
rameters, including a fixed seed. Due to the real-time constraint of the MOGA and SIL,
both experiments were executed in a duration of 24 wall-clock hours. The collected
data output consists of two parts: (i) The output [MW] of each energy production unit
for every 30-minute control interval, and (ii) the temperature over time within the TES.
In the practical implementation, the network latency causes the controller to get slightly
out of sync with the 30-minute interval with about one minute over 24 hours. This is
explained by the MOGA termination criterion being set to 30 minutes which does not
account for the added network latency to communicate with the other components.
Therefore, the time dimension of the practical experiment output was aligned with that
of the co-simulation by adding a column that assumes perfect synchronization between
records.

Fig. 10 and Fig. 11 each show a stacked bar chart with the output [MW] per energy
production unit at a 30-minute sample rate over 24 hours starting midnight April 18
and ending midnight April 19%. Accumulating the sampled MW output yields sco sim =
192.8 and Soperationat = 192.3, which means that both experiments produce a near equal

16

amount of energy within the period. Zooming in on the first hour (00:00 to 01:00), both
experiments agree on the allocation. In the remaining hours the allocation is different
in each interval, even when both experiments were configured with an identical seed.
This behavior is revisited and explained in the end of this section. Most energy is allo-
cated to district heating, which could indicate that this energy source is a good compro-
mise between price and CO2 emissions. The heat pump is turned on for the entire du-
ration which can be explained by its low CO2 emissions compared to the other energy
sources. The CHP is mostly used in the hours 8:00 to 10:30 where the electricity prices
and electricity demands are high. This indicate that it is economically feasible to use
the CHP to satisfy the electricity demands and lowering the costs by selling the surplus
electricity. The GB is the least used energy source in both experiments. However, the
GB is allocated around 05:00, 14:00, and 17:00 to 19:30. At these times the gas and
electricity CO2 emissions are almost equal, but the cost of gas is significantly lower.

16
-

- DH
- GB
CcHP

Max capacity = 15.5 MW

5 K %

Measured heat output [MW]

o N & o ®

5.0
43la3
35 37
" z.ﬁ.zs
12 rr ||
10.6.0.6 |

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00 00:00
simulation time [nh:mm]

Fig. 10. April 18" production unit output [MW] of the co-simulation.

-
- DH
- GB

CcHP

Max capacity = 15.5 MW

red heat output [MW]

Sh 615

8.0
7.3
55053 £2 534
4343 3 474345
3, 3.2
2.4
Illii .ﬁi I II III I

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00 00:00
Simulation time [hh:mm]

Measu

Fig. 11. April 18" production unit output [MW] of the practical implementation.

Fig. 12 shows the comparison of the TES temperature [°C] over the 24-hour period.
Both experiments were configured with an initial TES temperature and end TES tem-
perature of 50 °C. The end temperature (50 °C) in both experiments were satisfied.
However, the TES utilization deviates over the 24-hour period. For example, the co-
simulation experiment is reluctant to drain the TES from 00:00 to 08:30, where the
operational experiment utilize energy from the TES. In both experiments, the tempera-
ture increases to about 57 °C at 12:30 and decreases towards 50 °C at the end of the
experiment.

17

801 — TES [°C] (Co-simu
-=- TES [°C] (Operati

Max temperature = 79.84 [°C]

erature = 50.0 [°C]

Min temperature = 43.96 [°C]

00:00 01:00 02:00 03:00 0400 05:00 06:00 07:00 0800 09:00 10:00 11:00 1200 13:00 14:00 15:00 1600 17:00 18:00 19:00 20:00 21:00 22:00 2300 00:00
Simulation time [hh:mm]

Fig. 12. A comparison of the temperature within the TES over time.

The behavior discrepancy of both energy output [MW] and temperature [°C] is caused
by the deviating number of iterations (generations) performed by the MOGA within the
30-minute deadline. Even a slight variation can cause the two experiments to drift apart.
This explanation was verified by modifying the termination criterion of the MOGA
from a fixed time to a fixed number of iterations, which then yielded consistent results.
Configuring a fixed number of iterations, however, cannot guarantee a 30-minute dead-
line. Such configuration can cause the controller to finish too early or too late, thus
yielding unsatisfactory performance.

6 Discussion

This section discusses the challenges of transitioning the co-simulation implementation
in mosaik to a practical implementation context.

Challenge 1: Transferring the scheduler. Mosaik’s scheduler was not designed for op-
erational environments and cannot be transferred directly. Consequently, all coordina-
tion including communication and synchronization between components must be
achieved with other approaches or technologies. Practical communication approaches
are often limited in expressing temporal semantics and therefore time becomes an emer-
gent property of the implementation (Lee, 2018). As an example, the local energy sys-
tem in the co-simulation advances its state as directed by the scheduler. In contrast, the
practical implementation treats the local energy system as a representation of the phys-
ical process that advance time concurrently and thus require periodic sampling through
a request/polling mechanism. Practitioners must carefully analyze the coordination of
the co-simulation and choose implementation techniques that can satisfy these require-
ments without relying on the co-simulation scheduler.

Challenge 2: Transferring the co-simulation scenario script. The scenario script in mo-
saik provides a centralized and convenient way of initializing the co-simulation simu-
lators. This includes configuration of parameters, initial conditions, connections, and
exchanged input/output attributes. Transferring the scenario script into a practical con-
text, requires careful analysis of both the scenario script and the involved simulators.
Each simulator’s adapter code must be analyzed because it is responsible for the syn-
chronization behavior (time-triggered, event-based or hybrid). Depending on the size
and complexity of the scenario, this task can be difficult and error prone. In this study,
the scenario script was split into separate configurations deployed with each subsystem.
For example, the controller contained MOGA -specific configurations, and the local

18

energy system contained the initial energy system conditions. Other techniques can be
used, for example, centralized configuration management residing on a remote server
that each subsystem query initially.

Challenge 3: Shifting away from the co-simulation protocol. In mosaik co-simulation,
all simulators must adapt the underlying co-simulation protocol. The protocol consists
of a basic set of operations e.g. init (), create(), step (), and getData ().
The protocol uses the dependency inversion principle where each simulator awaits the
step signal initiated by the co-simulator. A practical implementation will likely involve
protocols that do not align with the semantics of these operations due to varying com-
munication needs. This was not a huge issue in the case study; however, many smart
grid co-simulations today involve complex protocols like the DNP3, IEC 61850,
DLMS/ COSEM, and Open Charge Point Protocol (OCPP). For mosaik currently no
adapters for those protocols are provided, but an adapter for IEC 60870 is available,
which shows the option to extend the mosaik ecosystem in this direction in the future
to facilitate the transition from co-simulation to real-world implementation. This ap-
proach requires implementing adapters for every protocol required in a scenario which
impose more work.

Importance of this study: This study has identified and discussed some of the challenges
in the transition process from co-simulation to practical implementation of economic
emission dispatch in a greenhouse compartment. These challenges are important for
practitioners to uncover to inform them in the realization of co-simulated energy sys-
tems. It was shown that the co-simulation could serve as a functional baseline for com-
paring the practical implementation. A co-simulation baseline is valuable because de-
viant behavior with the practical implementation can be detected early and guide the
transitioning process. The literature on bridging the gap between co-simulation and
real-world applications is sparse, and this paper contributes towards decreasing this gap
and can hopefully spark interest for further research in this area.

Limitations and bias: The results and discussed challenges were deducted from transi-
tioning a mosaik co-simulation to an architecture based around NATS.io. Conse-
quently, technological and tool dependency bias is a risk for validity. Further studies
are required to generalize the challenges to other domains and co-simulation technol-
ogy. It is expected that the challenges should hold for cases where (i) the co-simulation
technology employ a centralized scheduler (master algorithm), and (ii) there are dis-
similarities between the co-simulation architecture and practical architecture that disal-
lows a gradual transition towards field deployment.

7 Conclusion and Future Work

Co-simulation is often focusing on testing in an early stage of the development of new
technologies, thus the literature on transitioning co-simulations into practical applica-
tions is limited. Challenges faced by practitioners in this process, must be identified,
and solved before co-simulation can play a central role in whole development chain of
new technologies from the prototyping to the real-world implementation. This paper
contributes to this knowledge by transitioning a co-simulation of economic emission

19

dispatch into a practical implementation. This paper applied the principles from soft-
ware-in-the-loop where the actual control software is used in both the co-simulation
and practical implementation. This made the transitioning easier because only the in-
terface between the control software and the local energy system needed to be rewritten.
The internal economic emission dispatch algorithm remained unchanged. A few chal-
lenges were uncovered in this process, namely, (i) transferring the co-simulation sched-
uler and (ii) the co-simulation scenario script, and (iii) dealing with the shift away from
the co-simulation protocol by using NATS.io to implement multimodal communication
patterns. Despite of these challenges, co-simulation is still valuable because it can serve
as a model and baseline that reflects correct behavior in an undisturbed environment.
Practitioners can achieve confidence in their practical implementation by comparing it
against the co-simulation baseline. Researchers and practitioners can use the work in
this paper to inspire and inform the transitioning process. Many aspects still need to be
researched. For example, (i) how to achieve faster-than wall-clock execution of the
control software, (ii) assess if the co-simulation can be used as a baseline for evaluating
non-functional requirements in the practical implementation, and (iii) developing a
method that enables a more seamless transition process from early co-simulations into
practical usable applications by also accounting for the operating conditions of the tar-
get system architecture.

Acknowledgements

This research is part of the Digital Energy Hub funded by the Danish Industry Founda-
tion, the Project “IEA IETS Annex Task XVIII - Digitization, artificial intelligence and
related technologies for energy efficiency and reduction of greenhouse gas emissions
in industry” funded by EUDP (Case no.134-21010), and the Project "Danish Participa-
tion in IEA IETS Task XXI - Decarbonizing industrial systems in a circular economy
framework", funded by EUDP (project number: 134233-511205).

Author contributions

Based on the CRediT (Contributor Roles Taxonomy). CSBC: Conceptualization,
metodology, software, formal analysis, investigation, writing - original draft, Writing —
review & editing, visualization. SL: Resources, Supervision. JSS: Resources, Supervi-
sion. BNJ: Supervision, writing- review and editing, project management. ZGM: Su-
pervision, research management, funding acquisition.

References

Alleyne, A., Allgéwer, F., Ames, A., Amin, S., Anderson, J., Annaswamy, A., Antsaklis, P.,
Bagheri, N., Balakrishnan, H., & Bamieh, B. (2023). Control for Societal-scale Challenges:
Road Map 2030. /[EEE Control Systems Society Publicat.

Blochwitz, T., Otter, M., Akesson, J., Amold, M., Clauss, C., Elmqvist, H., Friedrich, M.,
Junghanns, A., Mauss, J., Neumerkel, D., Olsson, H., & Viel, A. (2012). Functional Mockup

20

Interface 2.0: The Standard for Tool independent Exchange of Simulation Models.
https://doi.org/10.3384/ecp12076173

Chowdhury, B. H., & Rahman, S. (1990). A review of recent advances in economic dispatch.
IEEE Transactions on Power Systems, 5(4), 1248-1259. https://doi.org/10.1109/59.99376

Clausen, C. S. B., Jorgensen, B. N., & Ma, Z. (2024a). A Modifiable Architectural Design for
Commercial Greenhouses Energy Economic Dispatch Testbed. In B. N. Jergensen, L. C. P.
da Silva, & Z. Ma, Energy Informatics Cham.

Clausen, C. S. B., Jorgensen, B. N., & Ma, Z. G. (2024b). A scoping review of In-the-loop
paradigms in the energy sector focusing on software-in-the-loop. Energy Informatics, 7(1),
12. https://doi.org/10.1186/s42162-024-00312-8

Clausen, C. S. B., & Serensen, J. V. (2021). Architectural Refinement of a Multi-Objective Multi-
Issue Optimization Framework. In.

Coello, C. A. C., Lamont, G. B., & Veldhuizen, D. A. V. (2007). Evolutionary Algorithms for
Solving Multi-Objective Problems. https://doi.org/10.1007/978-0-387-36797-2

Energinet. Energi Data Service. Retrieved June 25th from https://www.energidataservice.dk/

Gomes, C., Thule, C., Broman, D., Larsen, P. G., & Vangheluwe, H. (2018). Co-Simulation: A
Survey. ACM Comput. Surv., 51(3), Article 49. https://doi.org/10.1145/3179993

Hardy, T. D., Palmintier, B., Top, P. L., Krishnamurthy, D., & Fuller, J. C. (2024). HELICS: A
Co-Simulation Framework for Scalable Multi-Domain Modeling and Analysis. /EEE
Access, 12, 24325-24347. https://doi.org/10.1109/ACCESS.2024.3363615

Hassan, M. H., Yousri, D., Kamel, S., & Rahmann, C. (2022). A modified Marine predators
algorithm for solving single- and multi-objective combined economic emission dispatch
problems. Computers & Industrial Engineering, 164, 107906.
https://doi.org/https://doi.org/10.1016/j.cie.2021.107906

IEA. (2023). Unlocking Smart Grid Opportunities in Emerging Markets and Developing
Economies. https://www.iea.org/reports/unlocking-smart-grid-opportunities-in-emerging-
markets-and-developing-economies

Lee, E. A. (2018). What Is Real Time Computing? A Personal View. IEEE Design & Test, 35(2),
64-72. https://doi.org/10.1109/MDAT.2017.2766560

Mahdi, F. P., Vasant, P., Kallimani, V., Watada, J., Fai, P. Y. S., & Abdullah-Al-Wadud, M.
(2018). A holistic review on optimization strategies for combined economic emission
dispatch problem. Renewable and Sustainable Energy Reviews, 81, 3006-3020.
https://doi.org/https://doi.org/10.1016/j.rser.2017.06.111

Maniatopoulos, M., Lagos, D., Kotsampopoulos, P., & Hatziargyriou, N. (2017). Combined
control and power hardware in-the-loop simulation for testing smart grid control algorithms.
IET Generation, Transmission & Distribution, 11(12), 3009-3018.
https://doi.org/https://doi.org/10.1049/iet-gtd.2016.1341

Monostori, L. (2014). Cyber-physical Production Systems: Roots, Expectations and R&D

Challenges. Procedia CIRP, 17, 9-13.
https://doi.org/https://doi.org/10.1016/j.procir.2014.03.115
NordPoolGroup. Nord Pool | Day-ahead prices. Retrieved June 25th from

https://data.nordpoolgroup.com/auction/day-ahead/prices

Ofenloch, A., Schwarz, J. S., Tolk, D., Brandt, T., Eilers, R., Ramirez, R., Raub, T., & Lehnhoff,
S. (2022, 4-5 April 2022). MOSAIK 3.0: Combining Time-Stepped and Discrete Event
Simulation. 2022 Open Source Modelling and Simulation of Energy Systems (OSMSES),

https://doi.org/10.3384/ecp12076173
https://doi.org/10.1109/59.99376
https://doi.org/10.1186/s42162-024-00312-8
https://doi.org/10.1007/978-0-387-36797-2
https://www.energidataservice.dk/
https://doi.org/10.1145/3179993
https://doi.org/10.1109/ACCESS.2024.3363615
https://doi.org/https:/doi.org/10.1016/j.cie.2021.107906
https://www.iea.org/reports/unlocking-smart-grid-opportunities-in-emerging-markets-and-developing-economies
https://www.iea.org/reports/unlocking-smart-grid-opportunities-in-emerging-markets-and-developing-economies
https://doi.org/10.1109/MDAT.2017.2766560
https://doi.org/https:/doi.org/10.1016/j.rser.2017.06.111
https://doi.org/https:/doi.org/10.1049/iet-gtd.2016.1341
https://doi.org/https:/doi.org/10.1016/j.procir.2014.03.115
https://data.nordpoolgroup.com/auction/day-ahead/prices

21

Qu, Y. (2023). 4 Digital Twin Framework for Commercial Greenhouse Climate Control System
University of Southern Denmark (The Maersk Mc Kinney Moller Institute)].

Rizk-Allah, R. M., Hagag, E. A., & El-Fergany, A. A. (2023). Chaos-enhanced multi-objective
tunicate swarm algorithm for economic-emission load dispatch problem. Soft Computing,
27(9), 5721-5739. https://doi.org/10.1007/s00500-022-07794-2

Samad, T., Bauer, M., Bortoff, S., Di Cairano, S., Fagiano, L., Odgaard, P. F., Rhinehart, R. R.,
Sanchez-Pefia, R., Serbezov, A., Ankersen, F., Goupil, P., Grosman, B., Heertjes, M.,
Mareels, 1., & Sosseh, R. (2020). Industry engagement with control research: Perspective
and messages. Annual Reviews in Control, 49, 1-14.
https://doi.org/10.1016/j.arcontrol.2020.03.002

Sharvari, T., & Sowmya, N. K. (2019). A study on Modern Messaging Systems- Kafka,
RabbitMQ and NATS Streaming. In. Ithaca.

Steinbrink, C., Blank-Babazadeh, M., El-Ama, A., Holly, S., Liiers, B., Nebel-Wenner, M.,
Ramirez Acosta, R. P., Raub, T., Schwarz, J. S., Stark, S., Niefe, A., & Lehnhoff, S. (2019).
CPES Testing with mosaik: Co-Simulation Planning, Execution and Analysis. Applied
Sciences, 9(5). https://doi.org/10.3390/app9050923

Van Der Meer, A. A., Palensky, P., Heussen, K., Bondy, D. E. M., Gehrke, O., Steinbrinki, C.,
Blanki, M., Lehnhoff, S., Widl, E., Moyo, C., Strasser, T. 1., Nguyen, V. H., Akroud, N.,
Syed, M. H., Emhemed, A., Rohjans, S., Brandl, R., & Khavari, A. M. (2017). Cyber-
physical energy systems modeling, test specification, and co-simulation based testing. 2017
Workshop on Modeling and Simulation of Cyber-Physical Energy Systems, MSCPES 2017
- Held as part of CPS Week, Proceedings. https://doi.org/10.1109/MSCPES.2017.8064528

Vogt, M., Marten, F., & Braun, M. (2018). A survey and statistical analysis of smart grid co-
simulations. Applied Energy, 222, 67-78.
https://doi.org/https://doi.org/10.1016/j.apenergy.2018.03.123

Yang, T. (2022). Analysis and Application of Model Predictive Control in Energy Systems. In:
Syddansk Universitet. Det Tekniske Fakultet.

https://doi.org/10.1007/s00500-022-07794-2
https://doi.org/10.1016/j.arcontrol.2020.03.002
https://doi.org/10.3390/app9050923
https://doi.org/10.1109/MSCPES.2017.8064528
https://doi.org/https:/doi.org/10.1016/j.apenergy.2018.03.123

