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Abstract. Co-simulation is a widely applied method used to analyze the behavior 

of complex, interdisciplinary, and integrated cyber-physical control systems. De-

spite its prevalence, the transition from co-simulated control systems into practi-

cal applications is not discussed as much in the literature. This leaves a gap in the 

literature because practitioners may not be aware of these challenges. This paper 

aims to uncover and discuss some of the challenges that arise in the transition 

from a co-simulated control system to a practical application. 

A case study on economic emission dispatch in a Danish industrial greenhouse 

compartment serves as the fundament in studying these challenges. Economic 

emission dispatch is a method that can be used in a closed-loop arrangement to 

decrease costs and emissions of multiple energy production units. The case study 

is first implemented as a co-simulation which is subject to a subsequent practical 

implementation. The co-simulation implementation is governed by the open-

source framework mosaik that is used extensively in smart grid applications. In 

contrast, the practical implementation is not governed by mosaik due to architec-

tural design discrepancies.  A key feature of the study is the use of software-in-

the-loop, which means that the controller being tested is the actual software in-

tended for deployment.  

The highlighted challenges include that the core abstractions (master algorithm, 

scenario-script, and protocol) of the co-simulation framework cannot be trans-

ferred to an operational context due to design discrepancies. Despite these chal-

lenges, the co-simulation can still serve as a baseline for comparing functional 

performance metrics during the transition. 
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1 Introduction 

The transition to sustainable energy solutions necessitates the adoption of advanced 

digital technologies (IEA, 2023). A prevalent method in this context is co-simulation, 

which integrates various simulation models to analyze the behavior of complex, inter-

disciplinary, and integrated cyber-physical control systems (Gomes et al., 2018; Van 

Der Meer et al., 2017; Vogt et al., 2018). Despite its widespread use in studying novel 

control strategies in simulated environments, there is limited literature exploring its 

transition to practical control applications (Samad et al., 2020). This forms a gap be-

tween researchers that develop novel control strategies and practitioners that implement 

them. This is a problem because practitioners may not be aware of the challenges and 

underlying assumptions of co-simulation when transferring this technology to practical 

applications. The general problem is that co-simulation technology is typically de-

signed for the purpose of development, testing, and validation in a context that may not 

reflect operational constraints. Eventually, practitioners may encounter implementation 

issues that remain hidden until late in development such as integration problems, sys-

tem interoperability (protocols), concurrency, synchronization, performance and re-

source constraints. The goal and contribution of this paper is to investigate and discuss 

these challenges through a case study. A key feature of the study is the use of software-

in-the-loop, which means that the controller being tested is the actual software intended 

for deployment. The study aims to assist researchers in transitioning their co-simula-

tions to practical applications. The motivation is that there is a need to develop a testing 

approach that mirrors real-world design conditions, because existing approaches are 

limited in this aspect (Alleyne et al., 2023; Van Der Meer et al., 2017). To achieve this, 

two implementations of a case study on closed-loop economic emission dispatch in a 

Danish greenhouse compartment are compared by their design and results. The co-sim-

ulation implementation is governed by the co-simulation framework mosaik (Ofenloch 

et al., 2022; Steinbrink et al., 2019), while the practical implementation is oriented to-

wards operational constraints and is therefore not governed by mosaik. Section 1.1 in-

troduce the background and related work for undertaking the study. Section 2 describes 

the research method. Section 3 showcases the case study with the local energy system 

of an industrial greenhouse compartment. Section 4 details the design and implementa-

tion. Section 5 presents the results of the study. Section 6 discusses the identified chal-

lenges and limitations between the two implementations and Section 7 concludes the 

study and provides suggestions for future work. 

 

1.1 Background and related work 

This paper extends the previous work of economic emission dispatch (EED) within an 

industrial greenhouse compartment (Clausen et al., 2024a). EED is an approach used 

to determine the optimal output of multiple generation units to meet the demand at the 

lowest possible cost and emissions, subject to operational constraints (Chowdhury & 

Rahman, 1990; Hassan et al., 2022; Mahdi et al., 2018; Rizk-Allah et al., 2023). In the 

previous work, the EED was defined as a multi-objective optimization problem, and 

more concretely, implemented as a Multi-Objective Genetic Algorithm (MOGA) 
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(Coello et al., 2007). The multi-objective optimization extended EED by considering 

additional objectives, such as minimizing CO2 and meeting the energy demands within 

the greenhouse compartment. It was shown that this approach can provide more flexible 

management of the trade-offs between different business goals, providing a set of Pa-

reto-optimal solutions from which decision-makers can select the most suitable option 

based on their priorities. However, the previous work did not couple the optimized EED 

outputs to the greenhouse’s local energy system to form a cyber-physical control sys-

tem. This paper advances the realization of such as system. 

A cyber-physical system (CPS) consists of collaborating computational entities con-

nected with the Internet, the physical world and its on-going processes (Monostori, 

2014). A closed-loop CPS observes and controls physical processes in a continuous 

loop to maintain predictable and stable operation of the system. A system that controls 

energy resources is classified as a CPS because software and physical processes are 

undeniably coupled. In EED, the closed-loop control maintains optimal operation by 

dynamically adjusting energy resource dispatch in response to operational changes like 

energy demands, markets, and forecasts. This adaptive capability is essential for man-

aging the variability and uncertainty inherent in many modern energy systems like EED 

for greenhouses. 

Testing an EED application for greenhouses is non-trivial because of the inherent 

dynamics like weather, energy demands, seasonal variation, economics, technological 

integration, yield impact, and CO2 emissions. These conditions make it unrealistic to 

develop such system in the field without preliminary testing methods. Simulation-based 

methods like co-simulation are suitable for this task. 

Co-simulation is an approach that utilize diverse simulation models by connecting 

them to test their emergent behavior in a scenario prior to field-testing. In the energy 

domain, co-simulation has been used to test the performance by simulating the complex 

energy systems such as smart grids (Vogt et al., 2018). At early stages, a co-simulation 

can serve to demonstrate a conceptual design using coarse simulation components. At 

this stage, the control component is typically implemented within the modeling envi-

ronment, referred to as Model-in-the-loop (MIL). However, a co-simulation can be 

gradually refined by increasing its fidelity, which is the degree to which it mirrors the 

real system, by exchanging models with more detailed ones. Substituting the control 

component with the actual control software implementation is called Software-in-the-

loop (SIL) (Clausen et al., 2024b). SIL testing is focused on the software implementa-

tion to ensure that the software behaves correctly when interacting with other compo-

nents. Further in-the-loop extensions include processor-in-the-loop (PIL), power-hard-

ware-in-the-loop (PHIL) and hardware-in-the-loop (HIL), all which gradually moves 

the simulation closer to real-world operating conditions  (Clausen et al., 2024b; 

Maniatopoulos et al., 2017). The literature offers limited research on the progressive 

refinement process, evolving from early-stage co-simulation to field-tested application. 

For this paper, SIL is sufficient because this is the first step towards the realization of 

EED. 



4 

2 Research Method 

This study combines EED, co-simulation, and SIL testing approaches to advance the 

realization of a closed-loop CPS for optimal energy dispatch in greenhouses. A case 

study forms the basis for designing and implementing two different architectures with 

identical functionality – a co-simulation implementation and a practical implementa-

tion. The co-simulation implementation is used to deduct a functional baseline to verify 

and compare the practical implementation. The purpose of the practical implementation 

is to reflect the operational design constraints at a higher fidelity through SIL testing. 

If the output from each architecture is similar, confidence in the practical architecture 

increases. The research approach is illustrated in Fig. 1. 

 

Fig. 1. Illustration of the research method. 

Both architectures have overlapping technological constraints. This is the case for the 

simulation models and the optimization framework. The simulation models are reused 

from a previous study of a greenhouse project (Yang, 2022). These simulation models 

were developed in Dymola/Modelica and subsequently exported as Functional Mock-

up Units (FMUs) using the Functional Mock-up Interface (FMI) model exchange for-

mat. (Blochwitz et al., 2012). The FMI is an open standard, that ensures compatibility 

and interoperability across tools, and therefore enables the models to be reused across 

various simulation environments. An FMU is a package that implements the FMI stand-

ard, and it encapsulates its dynamic model and, in some cases, the solver. The optimi-

zation framework used within the controller was developed at the SDU Center for En-

ergy Informatics and employs a multi-objective optimization algorithm (Clausen & 

Sørensen, 2021). Similar multi-objective optimization frameworks are available, such 

as jMetal and MOEA Framework, but they lack certain features i.e., (i) a decision-

making module that can select ideal solutions from the Pareto front and (ii) integration 

with FMI/FMU. These features were demonstrated in a previous study (Clausen et al., 

2024a). 

Moving on to the technological discrepancies between the two architectures. The co-

simulation implementation is governed by the mosaik co-simulation framework 

(Steinbrink et al., 2019). Mosaik is a renowned open-source co-simulation framework 

in Python, that has been used extensively in analyzing smart grid applications 

(Ofenloch et al., 2022; Steinbrink et al., 2019). Mosaik solves hard design problems 

like configuration, deployment, dependencies, concurrency, and interoperability in-

cluding synchronization, protocol, and interfacing. Furthermore, it features a user-

friendly Application Programming Interface (API) and can integrate simulators imple-

mented in various programming languages and has FMI/FMU support. Lastly, mosaik 
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supports co-simulation of closed-loop control. The HELICS co-simulation framework 

was also considered but is more complex to set up, with unnecessary extra features for 

this research (Hardy et al., 2024). 

The practical implementation uses the NATS.io open-source middleware to achieve 

low-latency real-time interoperability between components (Sharvari & Sowmya, 

2019). NATS.io exchanges data segmented in messages and features multimodal 

sync/async communication paradigms like streams, event-based, request-based, distrib-

uted key/value pairs, and microservices. Similar communication middleware could be 

used instead like MQTT, gRPC, RSocket, and AMQP. However, NATS.io's support 

for multiple communication paradigms is appealing because it meets a broad range of 

communication needs without requiring the use of different technologies. Furthermore, 

NATS.io is part of the Cloud Native Computing Foundation (CNCF) ensuring commu-

nity support, vendor neutrality, and a high degree of interoperability with other systems. 

3 Case Study: Economic Emission Dispatch in an Industrial 

Greenhouse Compartment 

The case study involves EED in an industrial greenhouse compartment located in Den-

mark. The local energy system of the greenhouse compartment is illustrated in Fig. 2. 

The local energy system consists of multiple energy sources: A gas boiler (GB), a heat 

pump (HP), district heating (DH), a combined heat- and power plant (CHP), and the 

distribution grid. The produced heat is stored in a thermal energy storage (TES) which 

enables strategic utilization because the TES can be used as a buffer in scenarios of 

fluctuating energy prices and CO2 emissions. The compartment is connected to the 

distribution grid from where it consumes all its electrical power. The power produced 

by the CHP is sold to the distribution grid due to national regulations. Each of the en-

ergy sources can be controlled individually through setpoint control variables. 

 

 

Fig. 2. The local energy system of the greenhouse compartment. 

3.1 High-level View of the Cyber-Physical Control System 

A controller is assigned the responsibility of computing the optimal setpoints. Fig. 3 

depicts the bidirectional relationship between the controller and the local energy sys-

tem. This relationship forms a closed control loop, where the controller receives the 
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recent state of the energy system, computes optimal setpoints, and sends the setpoints 

to the local energy system. 

 

Fig. 3. A high-level view of the closed-loop CPS. 

The controller incorporates an economic dispatch algorithm formulated as a Multi-Ob-

jective Problem (MOP) and implemented as a MOGA. The MOP aims at minimizing 

two primary objectives: (i) the total costs, and (ii) the total CO2 emissions while satis-

fying both the greenhouse’s heat- and electricity demands, and the physical constraints 

of the system. The formulation of the MOP is described in Section 3.2. The MOP min-

imize the objectives over a future period, which requires that the algorithm has access 

to both forecast data and a model that can estimate the behavior of the local energy 

system. In other words, the forecast data and the energy system models are utilized to 

evaluate candidate setpoint vectors against the objectives. The closed control loop pro-

cedure is formulated in Algorithm 1. The algorithm starts with the initial state of the 

local energy system, and its goal is to produce a vector of setpoints and it operates 

within an endless control loop (line 1). Firstly, the algorithm retrieves forecasts for the 

greenhouse’s heating and electricity demands (line 2). It also gathers forecasts for en-

ergy prices, including electricity, gas, and district heating (line 3). Additionally, it col-

lects forecasts for CO2 emissions related to these energy sources (line 4). These fore-

casts along with the current state (line 5) are used to initialize the set of objectives that 

guide the optimization process (line 6). The optimization process starts with an empty 

Pareto frontier intended for containing non-dominated setpoints (line 7) and iteratively 

generate new candidate setpoints (line 9). The candidate setpoints are evaluated against 

the objectives (line 10) and the non-dominated setpoints are added to the Pareto frontier 

(line 11). This process is iterated until the termination criterion is reached. The termi-

nation criterion is bound to a fixed deadline of 30 minutes. This deadline can be tuned 

but is kept relatively large partly because of the inertia of the local energy system and 

to allow the MOGA to converge towards optimality. After the optimization loop con-

cludes, a decision-making strategy is employed to select the most suitable compromise 

solution from the Pareto frontier (line 13). This selected compromise represents the 

vector of setpoints that will be used to control the local energy system (line 14). The 

entire process repeats, continuously adapting to new forecasts and system states to 

maintain optimal control of the local energy system. 

  

                   

            

    

         

                      

         



7 

ALGORITHM 1: ECONOMIC EMISSION DISPATCH CLOSED-LOOP CONTROL 

 Input: Initial state of the local energy system Sinit 

 Output: A vector of setpoints 

1 while (controlling) 
2  Fheat, Felectricity ← retrieve greenhouse heat- and electricity demands forecasts 
3  Fprice_electricity, Fprice_gas, Fprice_district_heating ← retrieve energy prices forecasts 
4  Fco2_electricity, Fco2_gas, Fco2_district_heating ← retrieve CO2 emissions forecasts 
5  state ← retrieve the current state of the local energy system 
6  objectives ← initializeObjectives(forecasts, state) 
7  pf ← empty set 
8  while optimization not terminated do 
9   candidates ← generate candidate setpoints 
10   candidates’ ← evaluate(candidates, objectives) 
11   pf ← updateParetofront(pf, candidates’) 
12  end while 
13  selectedCompromise ← decisionMaker(pf, strategy) 
14  return selectedCompromise 
15 end while 

 

Each objective estimates the future behavior of the local energy system by exploiting 

models and forecast data. The length of this future is determined by a variable-sized 

sliding window. The window size can vary from 12 to 35 hours which reflects the day-

ahead spot market of electricity prices provided by Nord Pool (NordPoolGroup) and 

the day-ahead CO2 emissions provided by the Danish agency Energinet (Energinet). 

3.2 Local Energy System Models 

This section presents the models of the local energy system. The models are reused 

from previous work (Clausen et al., 2024a; Yang, 2022). The local energy system was 

implemented in Dymola/Modelica and exported as FMI 2.0 compatible FMUs. Fig. 4 

shows a block diagram of the composed models, their relationships, and the input/out-

put variables of each model. A description of the models input/output variables are 

provided in Table 1. The models were derived using grey-box modeling techniques 

based on on-site measurements from a commercial greenhouse in Denmark. In con-

trary, white-box models can provide high fidelity but are computationally intensive, 

and black-box modeling depend on high-quality training data, which were not availa-

ble. The grey-box models approximate the system’s response by tuning theoretical 

models with collected measurements. The system dynamics were simplified to linear 

equations, and the thermal energy storage does not consider temperature gradients or 

heat loss. These dynamics increase model fidelity at increased computational costs. 
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Fig. 4. Block diagram of the compartment’s local energy system (Clausen et al., 2024a). 

The input vector used to instantiate the energy system is defined by 

𝑆𝑖𝑛𝑖𝑡 = [𝐿𝐹𝑐ℎ𝑝, 𝐿𝐹𝑔𝑏 , 𝐿𝐹ℎ𝑝 , 𝑇𝑠𝑜𝑢𝑟𝑐𝑒 , 𝑇𝑖𝑛𝑖𝑡 , 𝑃𝑑ℎ,𝑟𝑒𝑞 , 𝑃𝑔ℎ] (1) 

from which the output of each model is calculated. The heat output vector Pout = [Ph,chp, 

Ph,gb, Ph,hp, Pdh] is used as input parameters of the TES. The outputs Eout = [Pe,chp, mchp, 

mgb, Pe,hp, Pdh] are used to calculate the economics of the energy system in terms of 

costs and CO2 emissions. 

Table 1. I/O structure of the FMU models. 

Model I/O Symbol Unit Range 
Initial 
value Description 

CHP 

Input LFchp [-] [0, 1] 0.0 Part load ratio of the CHP 
Output Ph,chp [MW] [0, 2.72] 0.0 Heat power produced by the 

CHP. 
Output Pe,chp [MW] [0, 1.28] 0.0 Electric power produced by the 

CHP. 
Output mchp [kg/s] [0, 0.11] 0.0 Natural gas mass flow rate con-

sumed by the CHP. 

GB 

Input LFgb [-] [0, 1] 0.0 Part load ratio for the gas boiler. 

Output Ph,gb [MW] [0, 7] 0 Heat power produced by the GB. 

Output mgb [kg/s] [0, 0.194] 0.0 Natural gas mass flow rate con-
sumed by the gas boiler. 

HP 

Input LFhp [-] 0 or 1 

(binary) 

0 Load factor of the HP model. 

Off=0, On=1. 
Input Tsource [°C] [10, 30] 15 Temperature at the inlet of the 

evaporator of the HP. 

Output Ph,hp [kW] [0, 500] 0 Heat power produced by the HP. 
Output Pe,hp [kW] [0, 125] 0 Electricity consumed by the HP. 

DH 
Input Pdh,req [MW] [0, 6] 0.0 Requested heat from the district 

heating network. 
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Output Pdh [MW] [0, 5.4] 0.0 Obtained heat from the district 

heating network 

(90% efficiency). 

TES 

Input Ph,chp [MW] [0, 2.72] 0.0 Heat power produced by the 
CHP. 

Input Pdh [MW] [0, 5.4] 0.0 Obtained heat from the district 

heating network 

(90% efficiency). 

Input Ph,hp [kW] [0, 500] 0 Heat power produced by the HP. 

Input Ph,gb [MW] [0, 7] 0 Heat power produced by the GB. 

Input Pgh [MW] [0, 10] 0 Greenhouse heat demand. 

Input Tinit [°C] [43.96, 

79.84] 

50.0 The initial temperature of the 

thermal energy storage (TES). 

Output TTES [°C] [43.96, 

79.84] 

50.0 Water temperature of the TES. 

Output QTES [MWh] [0, 64.4] 10.84 Stored energy in the TES. 

3.3 Multi-Objective Problem Definition 

This section presents the MOP definition of the EED optimization that are reused from 

(Clausen et al., 2024a). The energy dispatch schedule is represented as a decision vector 

that contains the energy systems load factors for each instant in the schedule. The sched-

ule is a prescription of how to operate the facility over an extended period, and there-

fore, the subvector describing components at index i = 0 holds the setpoints that are 

actuated next. 

𝑆 = [𝐶𝑖 , 𝐶𝑖+1, … , 𝐶𝑛, 𝐺𝑖 , 𝐺𝑖+1, … , 𝐺𝑛 , 𝐻𝑖 , 𝐻𝑖+1, … , 𝐻𝑛 , 𝐷𝑖 , 𝐷𝑖+1, … , 𝐷𝑛]𝑇 (2) 

where S is the schedule, i is an instant, n is the number of instants, C is the CHP load 

factor, G is the GB load factor, H is the HP load factor and D is the heat request to the 

DH provider. The number of instants n is dependent on the length of the forecast prog-

nosis. The optimization problem is subject to minimizing the costs and CO2 emissions 

of the schedule: 

min 𝑂𝑐𝑜𝑠𝑡(𝑆) = ∑ 𝑐𝑜𝑠𝑡𝑔𝑎𝑠,𝑖 + 𝑐𝑜𝑠𝑡𝑒𝑙,𝑖
𝑛
𝑖=1 + 𝑐𝑜𝑠𝑡𝑑ℎ,𝑖 −  𝑖𝑛𝑐𝑜𝑚𝑒𝑒𝑙,𝑖 (3) 

min 𝑂𝐶𝑂2(𝑆) = ∑ 𝐶𝑂2𝑔𝑎𝑠,𝑖 + 𝐶𝑂2𝑒𝑙,𝑖
𝑛
𝑖=1 + 𝐶𝑂2𝑑ℎ,𝑖 (4) 

where costgas,i is the price of gas consumed in the instant, costel,i is the price of electricity 

consumed in the instant, and costdh,i is the price of district heating consumed in the 

instant. The CHP produces electricity which needs to be deducted from incomeel,i in the 

instant. CO2gas,i is the emissions of gas consumed by the CHP and GB. CO2el,i is the 

emissions of electricity consumed by the HP. CO2dh,i is the emissions caused by district 

heating.  

The optimization is subject to the following objective space constraints: 

𝐶𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦(𝑆) =  ∀𝑖 ∈ 𝑆 ∶  𝑃𝑔ℎ,𝑖 + 𝑃𝑒,ℎ𝑝,𝑖  ≤ 𝑃𝑔𝑟𝑖𝑑_𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦  (5) 

𝐶𝑇𝐸𝑆(𝑆) =  ∀𝑖 ∈ 𝑆 ∶  𝑇𝑇𝐸𝑆,𝑚𝑖𝑛 ≤ 𝑇𝑇𝐸𝑆,𝑖  ≤ 𝑇𝑇𝐸𝑆,𝑚𝑎𝑥 (6) 
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Celectricity(S) states that the greenhouse power demand and the HP power consumption 

must not exceed the grid capacity in any instant. CTES(S) states that the temperature of 

the TES must be within the minimum and maximum values in any instant. 

The optimization is subject to the following decision space constraints to reduce the 

size of the decision space. 

𝐶𝐶𝐻𝑃(𝑆) =  ∀𝐶𝑖 ∈ 𝑆 ∶ (0 ≤ 𝐶𝑖 ≤ 1) ∧  (𝐶𝑖  𝑚𝑜𝑑 𝐶𝑟 =  0) (7) 

𝐶𝐺𝐵(𝑆) =  ∀𝐺𝑖 ∈ 𝑆 ∶ (0 ≤ 𝐺𝑖 ≤ 1) ∧ (𝐺𝑖  𝑚𝑜𝑑 𝐺𝑟 =  0) (8) 

𝐶𝐷𝐻(𝑆) =  ∀𝐷𝑖 ∈ 𝑆 ∶  (0 ≤ 𝐷𝑖 ≤ 𝐷𝑚𝑎𝑥) ∧  (𝐷𝑖  𝑚𝑜𝑑 𝐷𝑟 =  0) (9) 

𝐶𝐻𝑃(𝑆) =  ∀𝐻𝑖 ∈ 𝑆 ∶  𝐻𝑖 = 0 ∨ 𝐻𝑖 = 1   (10) 

CCHP(S) states that the load factor Ci must be between 0 and 1 while being divisible by 

the resolution Cr.  CGB(S) and CDH(S) have similar properties but with separate resolu-

tions Gr and Dr. CHP state that the load factor Hi must be exactly 0 (turned off) or 1 

(turned on). 

 

The TES was configured with an initial temperature Tinit to enable immediate flexible 

use. However, it must not be economically feasible to drain the TES completely in the 

last instants of the schedule as the optimization would regard the initial TES contents 

as costless energy. Therefore, an additional constraint was created to avoid this case: 

𝐶𝑇𝐸𝑆_𝑒𝑛𝑑_𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒(𝑆) =  ∀𝑖 ∈ 𝑆 ∶  𝑇𝑖𝑛𝑖𝑡 ≤ 𝑇𝑇𝐸𝑆,n (11) 

where Tinit is the initial temperature of the TES and TTES,n is the temperature in the last 

instant. 

3.4 Scenario 

The scenario is based on forecasts represented as several time series with hourly inter-

vals. All input data were retrieved for the two-day period April 18th to April 19th, 2023. 

The time series in the top of Fig. 5 shows the greenhouse’s electricity and heat de-

mands. The energy demands are based on optimal climate and historical energy con-

sumption records (Qu, 2023). 

The time series in the middle of Fig. 5 shows the energy prices for electricity, natural 

gas, and district heating. The electricity wholesale price signal was retrieved from Nord 

Pool in the Danish area DK1 and tariffs were retrieved from Energinet. The gas price 

signal was retrieved from the next day's index of the Exchange Transfer Facility (ETF) 

at the European Energy Exchange (EEX). 

The time series in the bottom of Fig. 5 shows the CO2 emissions for electricity, 

natural gas, and district heating. The CO2 emissions for electricity are available in a 5-

minute resolution at Energinet. The 5-minute resolution was aligned with the other 

forecasts by aggregating the signal into an hourly resolution. CO2 emissions for district 

heating are declared as a yearly average and were retrieved from the Danish provider 

Fjernvarme Fyn. The CO2 emissions for gas are estimated to be 204 kg CO2 / MWh by 

the Danish Energy Agency. 
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Fig. 5. The two-day forecasts used for the scenario. 

4 Design and Implementation 

4.1 Co-simulation implementation with mosaik 

The closed-loop co-simulation was implemented in the mosaik co-simulation frame-

work (Steinbrink et al., 2019). Mosaik provides the fundamental API and components 

for constructing an executable co-simulation of the case study including: 

The Scenario script. The scenario script is a Python file responsible for instantiating 

simulators, configuring and connecting them through their exposed input/output attrib-

utes. Internally, mosaik constructs a data flow graph – a directed acyclic graph of the 

interdependent simulators including predecessors and successors. 

The Component API. Mosaik assumes that a simulator is an independent piece of 

executable software that implements a simulation model. The component API is a sim-

ulator interface definition that mosaik uses to communicate with each simulator and 

coupling them through functions like create, step, and getData. Each simulator 

provides an implementation of the interface, and it may be exposed directly through 

Python (within the same process), or through JSON over TCP/IP (external simulation 

process). It is necessary to provide implementations of this interface if they do not al-

ready exist within the mosaik codebase. Mosaik provides implementations for e.g. 

FMI/FMU integration and exporting data in CSV format.  

The Simulation manager. The simulation manager is responsible for establishing and 

maintaining the connections between mosaik and each simulator. 

The Scheduler. The scheduler utilizes a master algorithm to coordinate the execution 

and data exchange of all simulators within the scenario. This master algorithm employs 

centralized coordination and synchronization mechanisms. Specifically, mosaik man-

ages the global simulation time and instructs each simulator to advance accordingly, 
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subsequently retrieving the resulting data. Consequently, all data exchanges are medi-

ated through mosaik. 

The realized co-simulation is illustrated in a component diagram in Fig. 6. Each 

component, except the scheduler, provides an implementation of the mosaik Compo-

nent API. From the diagram the following components are shown. 

Scheduler. This component functions as described in the mosaik framework. 

MOGA. This is the Java-based MOGA controller. The actual controller was adapted 

to be interoperable with mosaik by extending the abstract Java class de.offis.mo-

saik.api.Simulator and overriding its abstract methods init(…), cre-

ate(…), step(…), and getData(…). 

CSVWriter. This is a default component within the mosaik code base. It functions as 

an observer to export all relevant simulation into a CSV-file for later analysis. 

Forecasts. This component contains a Python forecast simulation model that provides 

data in variable-sized sliding window as previously described in Section 3.1. 

Local energy system. This package resembles the local energy system and contains 

FMI/FMU compatible simulation models of the CHP, GB, HP, DH, and TES. Mosaik 

provides an adapter to facilitate FMI/FMU compatibility. 

 

 

Fig. 6. The co-simulation composition in mosaik. 

The simulators are synchronized on different timescales. The co-simulation’s step size 

follows wall-clock time because the execution of the MOGA controller’s termination 

criterion of 30 minutes. The forecasts and FMI/FMU simulators execute faster than 

their step sizes, so their outputs remain valid until the next simulation step. The 

FMI/FMU simulators have a 1-minute step size because their output values are col-

lected at a 1-minute sample rate by the event-based CSVWriter component. 

The first few synchronization points of the running example are shown in the timing 

diagram of Fig. 7.  
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Fig. 7. A timing diagram showing the synchronization of each simulator in mosaik. 

For simplicity, CSWWriter component is not shown, and all FMI/FMUs are aggregated 

inside the local energy system. Each simulator is configured as time-shifted to enable 

concurrent execution of the processes as would be the case in the real world. Because 

each simulator is time-shifted they must be initialized with initial input values. All sim-

ulators begin their execution path at time t = 0. The local energy system subsequently 

advances in 1-minute time steps, and the output values are collected by the CSVWriter. 

The closed-loop between the local energy system and the controller is established be-

cause the outputs of each simulator are used by the other in its next time step. This is 

indicated by the crossing zigzag data flow between the controller and the local energy 

system. The forecasts are updated hourly, and therefore new forecast data is fed to the 

controller at an hourly rate shown at t = 0 [s], t = 1 [h], t = 2 [h] in the diagram. 

4.2 Practical design and implementation 

A key aspect of the practical design and implementation is that it can serve as a skeletal 

system. NATS.io serves as the integration fabric which enables loosely coupled com-

ponents to communicate in real-time through messaging. Components can be easily 

added to the infrastructure to extend capabilities. For instance, when the local energy 

system periodically publishes its state, it is straightforward to implement a logger com-

ponent that stores the state for monitoring and analysis. Additionally, the local energy 

system exposes its state via request-response semantics when the controller requires 

immediate access. Fig. 8 shows the composition of the practical implementation where 

each component is connected to and communicates via NATS.io. 

 

 

Fig. 8. The practical composition of the closed-loop control system. 
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The component boundaries are similar to those in the co-simulation. For instance, the 

controller remains an isolated component that uses models of the local energy system, 

its actual state, and forecast data to compute optimal setpoints. Similarly, the forecast 

data is treated as an isolated component that can be queried on demand. The local en-

ergy system is emulated as a single entity instead of separate entities (i.e., CHP, GB, 

HP, DH, and TES). The emulator exposes an endpoint that can receive setpoints for all 

these entities. This emulator can later be replaced with an adaptor that interacts with 

the real system via Programmable Logic Controllers (PLCs). Internally, the emulator 

simulates the behavior of the local energy system and periodically emits its state. All 

components are connected over a TCP/IP network and have their clock synchronized 

with the Network Time Protocol (NTP). The components reside on the same local area 

network (LAN), which reduces latency between them. The forecast component aggre-

gates all relevant forecasts and exposes them uniformly over NATS.io. Messages are 

JSON formatted for readability but can use any other string or binary-compatible for-

mat e.g. Protocol Buffers, MessagePack, etc. Fig. 9 shows a combined sequence dia-

gram of the interaction between the local energy system emulator and the controller. 

 

Fig. 9. Sequence diagram of the economic emission dispatch system. 
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The emulator is initialized with two concurrent threads. The first thread is responsible 

for continuously simulating the FMU and publishing the resulting state to NATS.io. 

The FMU is advanced in 1 second intervals, and the execution time of the FMU must 

be lower than 1 second to avoid drifting from wall-clock time. The sync() method 

simply blocks until 1 whole second has passed. The second thread listens for incoming 

messages and dispatches them accordingly. If the message contains a state request, the 

current state of the local energy system is returned. If the message contains setpoints, 

the internal FMU inputs are updated accordingly. 

The controller executes within the first thread and contains an endless control loop. 

The control loop fetches the forecasts by sending a request through NATS.io that is 

forwarded to, and returned by, the forecasts service. The length of the forecasts varies 

accordingly to the variable-size sliding window as previously described. Then the cur-

rent state of the local energy system is similarly requested through NATS.io. The 

MOGA optimization is then started given the parameters which are read from a config-

uration file. The runOptimization(…) method is a blocking call that returns when 

the termination criterion of 30 minutes has passed. The optimization returns the set-

points that were chosen based on the decision-making criteria which is the compromise 

between total energy costs and CO2 emissions in the Pareto-front. Finally, these set-

points are published to NATS.io which are then received by the local energy system 

emulator. 

5 Results 

This section presents the comparison of the two case study implementations. The com-

parison is based on an analysis of the functional behavior of the greenhouse energy 

system in terms of the energy output and TES temperature response. Both experiments 

were executed on a workstation with a 3.7 GHz (4.8 GHz Turbo) AMD Ryzen 9 5900X 

12-core (24 threads) processor, 64 GB DDR4-3200 RAM, NVIDIA GeForce RTX 

3060, and a Samsung 970 EVO NVMe drive. The experiments were configured with 

identical initial conditions in the local energy system, forecasts, and optimization pa-

rameters, including a fixed seed. Due to the real-time constraint of the MOGA and SIL, 

both experiments were executed in a duration of 24 wall-clock hours. The collected 

data output consists of two parts: (i) The output [MW] of each energy production unit 

for every 30-minute control interval, and (ii) the temperature over time within the TES. 

In the practical implementation, the network latency causes the controller to get slightly 

out of sync with the 30-minute interval with about one minute over 24 hours. This is 

explained by the MOGA termination criterion being set to 30 minutes which does not 

account for the added network latency to communicate with the other components. 

Therefore, the time dimension of the practical experiment output was aligned with that 

of the co-simulation by adding a column that assumes perfect synchronization between 

records. 

Fig. 10 and Fig. 11 each show a stacked bar chart with the output [MW] per energy 

production unit at a 30-minute sample rate over 24 hours starting midnight April 18th 

and ending midnight April 19th. Accumulating the sampled MW output yields sco_sim = 
192.8 and soperational = 192.3, which means that both experiments produce a near equal 
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amount of energy within the period. Zooming in on the first hour (00:00 to 01:00), both 

experiments agree on the allocation. In the remaining hours the allocation is different 

in each interval, even when both experiments were configured with an identical seed. 

This behavior is revisited and explained in the end of this section. Most energy is allo-

cated to district heating, which could indicate that this energy source is a good compro-

mise between price and CO2 emissions. The heat pump is turned on for the entire du-

ration which can be explained by its low CO2 emissions compared to the other energy 

sources. The CHP is mostly used in the hours 8:00 to 10:30 where the electricity prices 

and electricity demands are high. This indicate that it is economically feasible to use 

the CHP to satisfy the electricity demands and lowering the costs by selling the surplus 

electricity. The GB is the least used energy source in both experiments. However, the 

GB is allocated around 05:00, 14:00, and 17:00 to 19:30. At these times the gas and 

electricity CO2 emissions are almost equal, but the cost of gas is significantly lower. 

 

 
Fig. 10. April 18th production unit output [MW] of the co-simulation. 

 

 
Fig. 11. April 18th production unit output [MW] of the practical implementation. 

 

Fig. 12 shows the comparison of the TES temperature [°C] over the 24-hour period. 

Both experiments were configured with an initial TES temperature and end TES tem-

perature of 50 °C. The end temperature (50 °C) in both experiments were satisfied. 

However, the TES utilization deviates over the 24-hour period. For example, the co-

simulation experiment is reluctant to drain the TES from 00:00 to 08:30, where the 

operational experiment utilize energy from the TES. In both experiments, the tempera-

ture increases to about 57 °C at 12:30 and decreases towards 50 °C at the end of the 

experiment. 
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Fig. 12. A comparison of the temperature within the TES over time. 

 

The behavior discrepancy of both energy output [MW] and temperature [°C] is caused 

by the deviating number of iterations (generations) performed by the MOGA within the 

30-minute deadline. Even a slight variation can cause the two experiments to drift apart. 

This explanation was verified by modifying the termination criterion of the MOGA 

from a fixed time to a fixed number of iterations, which then yielded consistent results. 

Configuring a fixed number of iterations, however, cannot guarantee a 30-minute dead-

line. Such configuration can cause the controller to finish too early or too late, thus 

yielding unsatisfactory performance. 

6 Discussion 

This section discusses the challenges of transitioning the co-simulation implementation 

in mosaik to a practical implementation context. 

Challenge 1: Transferring the scheduler. Mosaik’s scheduler was not designed for op-

erational environments and cannot be transferred directly. Consequently, all coordina-

tion including communication and synchronization between components must be 

achieved with other approaches or technologies. Practical communication approaches 

are often limited in expressing temporal semantics and therefore time becomes an emer-

gent property of the implementation (Lee, 2018). As an example, the local energy sys-

tem in the co-simulation advances its state as directed by the scheduler. In contrast, the 

practical implementation treats the local energy system as a representation of the phys-

ical process that advance time concurrently and thus require periodic sampling through 

a request/polling mechanism. Practitioners must carefully analyze the coordination of 

the co-simulation and choose implementation techniques that can satisfy these require-

ments without relying on the co-simulation scheduler. 

Challenge 2: Transferring the co-simulation scenario script. The scenario script in mo-

saik provides a centralized and convenient way of initializing the co-simulation simu-

lators. This includes configuration of parameters, initial conditions, connections, and 

exchanged input/output attributes. Transferring the scenario script into a practical con-

text, requires careful analysis of both the scenario script and the involved simulators. 

Each simulator’s adapter code must be analyzed because it is responsible for the syn-

chronization behavior (time-triggered, event-based or hybrid). Depending on the size 

and complexity of the scenario, this task can be difficult and error prone. In this study, 

the scenario script was split into separate configurations deployed with each subsystem. 

For example, the controller contained MOGA-specific configurations, and the local 
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energy system contained the initial energy system conditions. Other techniques can be 

used, for example, centralized configuration management residing on a remote server 

that each subsystem query initially. 

Challenge 3: Shifting away from the co-simulation protocol. In mosaik co-simulation, 

all simulators must adapt the underlying co-simulation protocol. The protocol consists 

of a basic set of operations e.g. init(), create(), step(), and getData(). 

The protocol uses the dependency inversion principle where each simulator awaits the 

step signal initiated by the co-simulator. A practical implementation will likely involve 

protocols that do not align with the semantics of these operations due to varying com-

munication needs. This was not a huge issue in the case study; however, many smart 

grid co-simulations today involve complex protocols like the DNP3, IEC 61850, 

DLMS/ COSEM, and Open Charge Point Protocol (OCPP). For mosaik currently no 

adapters for those protocols are provided, but an adapter for IEC 60870 is available, 

which shows the option to extend the mosaik ecosystem in this direction in the future 

to facilitate the transition from co-simulation to real-world implementation. This ap-

proach requires implementing adapters for every protocol required in a scenario which 

impose more work. 

Importance of this study: This study has identified and discussed some of the challenges 

in the transition process from co-simulation to practical implementation of economic 

emission dispatch in a greenhouse compartment. These challenges are important for 

practitioners to uncover to inform them in the realization of co-simulated energy sys-

tems. It was shown that the co-simulation could serve as a functional baseline for com-

paring the practical implementation. A co-simulation baseline is valuable because de-

viant behavior with the practical implementation can be detected early and guide the 

transitioning process. The literature on bridging the gap between co-simulation and 

real-world applications is sparse, and this paper contributes towards decreasing this gap 

and can hopefully spark interest for further research in this area. 

Limitations and bias: The results and discussed challenges were deducted from transi-

tioning a mosaik co-simulation to an architecture based around NATS.io. Conse-

quently, technological and tool dependency bias is a risk for validity. Further studies 

are required to generalize the challenges to other domains and co-simulation technol-

ogy. It is expected that the challenges should hold for cases where (i) the co-simulation 

technology employ a centralized scheduler (master algorithm), and (ii) there are dis-

similarities between the co-simulation architecture and practical architecture that disal-

lows a gradual transition towards field deployment. 

7 Conclusion and Future Work 

Co-simulation is often focusing on testing in an early stage of the development of new 

technologies, thus the literature on transitioning co-simulations into practical applica-

tions is limited. Challenges faced by practitioners in this process, must be identified, 

and solved before co-simulation can play a central role in whole development chain of 

new technologies from the prototyping to the real-world implementation. This paper 

contributes to this knowledge by transitioning a co-simulation of economic emission 
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dispatch into a practical implementation. This paper applied the principles from soft-

ware-in-the-loop where the actual control software is used in both the co-simulation 

and practical implementation. This made the transitioning easier because only the in-

terface between the control software and the local energy system needed to be rewritten. 

The internal economic emission dispatch algorithm remained unchanged. A few chal-

lenges were uncovered in this process, namely, (i) transferring the co-simulation sched-

uler and (ii) the co-simulation scenario script, and (iii) dealing with the shift away from 

the co-simulation protocol by using NATS.io to implement multimodal communication 

patterns. Despite of these challenges, co-simulation is still valuable because it can serve 

as a model and baseline that reflects correct behavior in an undisturbed environment. 

Practitioners can achieve confidence in their practical implementation by comparing it 

against the co-simulation baseline. Researchers and practitioners can use the work in 

this paper to inspire and inform the transitioning process. Many aspects still need to be 

researched. For example, (i) how to achieve faster-than wall-clock execution of the 

control software, (ii) assess if the co-simulation can be used as a baseline for evaluating 

non-functional requirements in the practical implementation, and (iii) developing a 

method that enables a more seamless transition process from early co-simulations into 

practical usable applications by also accounting for the operating conditions of the tar-

get system architecture. 
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