Bridging Rapid Simulation and Real-Time Execution: A
Software-in-the-Loop Testing Platform for OCPP-Based
EV Charging Station Management Systems

Christian Skafte Beck Clausen [0000-0003-3118-7253] 'Bo Ngrregaard Jergensen [0000-0001-5678-
66021 ynd Zheng Grace Ma [0000-0002:9134-1032]

SDU Center for Energy Informatics, Maersk Mc-Kinney Moeller Institute, The Faculty of En-
gineering, University of Southern Denmark, Odense, Denmark
zma@mmmi . sdu.dk

Abstract. Electric vehicle (EV) charging management systems require scalable
and standards-compliant coordination across distributed infrastructures. How-
ever, current testing approaches often lack the flexibility to support both acceler-
ated development workflows and high-fidelity real-time validation. This paper
presents a dual-mode Software-in-the-Loop (SiL) testing platform for validating
EV Charging Station Management Systems (CSMSs) that communicate using
the Open Charge Point Protocol (OCPP) 2.0.1. The platform enables the same
CSMS software to be evaluated across discrete-time and wall-clock-time modes
without modification, supporting rapid scenario testing and protocol-accurate
verification. A case study involving 126 home charging stations in Denmark
evaluates two smart charging strategies under real-world electricity pricing and
demand conditions. Results show that discrete-time testing enables rapid perfor-
mance evaluation, while wall-clock execution maintains protocol fidelity with
minimal time drift. The platform offers a robust and reusable method for validat-
ing EV charging software and can support future applications involving distrib-
uted energy resources (DERs), smart grids, and cyber-physical energy systems.

Keywords: Software-in-the-Loop (SiL) Testing, Charging Station Management
System (CSMS), Open Charge Point Protocol (OCPP 2.0.1), Smart Charging,
Validation and Verification (V&V), Simulation, Electric Vehicle (EV) Charg-
ing, Energy Management System (EMS), Smart Grid, Distributed Energy Re-
sources (DER)

1 Introduction

The electrification of road transport is widely seen as a critical enabler for reducing
greenhouse gas emissions [1]. However, this transition poses significant challenges for
system operators and market actors alike, as large-scale integration of EVs increases
the complexity and variability of both local and system-wide electricity demand. In this
context, management systems for EV charging are essential for aligning flexible charg-
ing behavior with user preferences, grid constraints, and market signals.

mailto:zma@mmmi.sdu.dk

2 C. Clausen et al.

The deployment of these systems increasingly depends on standardized communi-
cation protocols to ensure interoperability across hardware and software vendors. One
such protocol, the Open Charge Point Protocol (OCPP), has emerged as a de facto
standard for managing interactions between charge stations (CSs) and CS management
systems (CSMSs). The recent OCPP 2.0.1 specification [2] introduces enhanced capa-
bilities for smart charging, security, and extensibility, but also increases complexity in
terms of control logic, timing, and asynchronous communication.

To ensure that such systems behave reliably under diverse and dynamic operating
conditions, Software-in-the-loop (SiL) testing has gained traction as a method for vali-
dating real-world control software against simulated environments. SilL allows devel-
opers to execute and evaluate software logic prior to deployment, bridging the gap be-
tween purely analytical validation and hardware testing [3]. However, the majority of
SiL. approaches in the energy domain tend to either operate exclusively in real time,
making them unfit for iterative development workflows with rapid feedback or for val-
idating communication-centric applications using real-world application protocols like
OCPP.

In particular, support for both discrete (accelerated execution) and real-time (wall-
clock execution) domains while maintaining application protocol fidelity is not yet
widely supported across existing platforms. Moreover, previous SiL testing studies of-
ten simplify the communication layer by using non-standard application protocols.
However, such approximations are inadequate for reusing the same management soft-
ware in a more refined deployment environment for verification purposes.

According to IEEE Standard 1012-2024 [4], validation concerns whether the right
system is being built, while verification ensures it is built correctly. The proposed SiL
platform addresses both: discrete-time execution enables domain experts to rapidly val-
idate system behavior in simulated environments, whereas wall-clock execution facili-
tates verification in a refined deployment environment that resembles realistic condi-
tions, particularly communication and timing aspects. This dual perspective aligns with
established engineering principles, such as the V-model in automotive development,
and extends them to the energy informatics domain.

This paper addresses these limitations by presenting a Software-in-the-loop testing
platform for EV CSMSs based on previous work [5]. The platform allows the same
CSMS software to operate either against a simulated environment in discrete time or in
real time using OCPP 2.0.1 message exchanges. The proposed approach enables rapid
scenario testing during development and high-fidelity testing during verification, en-
suring that systems perform consistently across execution modes. The platform is eval-
uated through a case study based on Danish household charging, incorporating real
driving patterns, market prices, and charging strategies.

2 Literature Review

In-the-loop paradigms are widely used to verify control logic across abstraction levels
in complex systems [3]. These paradigms include Model-in-the-Loop (MiL), Software-
in-the-Loop (SiL), Processor-in-the-Loop (PiL), and Hardware-in-the-Loop (HiL),
each supporting different phases of system development. MiL is primarily used in

A SiL Testing Platform for OCPP-based EV Charging CSMSs 3

early-stage validation where the controller and plant models are both simulated, often
using tools like MATLAB/Simulink or Modelica. PiL executes compiled controller
code on target processors to evaluate timing behavior. HiL integrates physical compo-
nents with simulated environments to test hardware-software integration under real-
time constraints. While HiL is critical for final-stage testing, it introduces significant
cost and complexity.

SiL, in contrast, offers a balance between fidelity and flexibility. It executes real-
world control logic against a simulation model and supports closed-loop evaluation
without physical hardware. SiL. has been widely applied in domains such as automotive
control [6, 7], robotics [8], and renewable energy systems [9]. In energy applications,
SiL. supports testing of control strategies for Volt/Var regulation [10], dispatch algo-
rithms [11], and solar thermal systems [12]. Real-time digital simulators like RTDS and
platforms such as TRNSYS and Dymola are often used to represent the virtual plant,
while control logic is implemented in environments like MATLAB or AMESIM [13].

Despite its potential, SiL. remains underutilized in the energy sector. Most studies
examine single-controller, single-model scenarios, limiting insights into how SiL might
scale to m-to-n configurations such as energy management systems coordinating mul-
tiple DERs. Moreover, interoperability issues persist in SiL testing. Components such
as controllers and simulation models are often built using different software tools and
communication protocols like TCP/IP or OPC UA [13]. These differences in commu-
nication methods, data formats, and software environments make it difficult to connect
systems and ensure valid operation within a unified simulation setup prior to verifica-
tion.

Accelerated SiL testing is another area with limited methodological coverage. To
enable long-duration scenario analysis, such as annual grid operation or EV charging
patterns, SiL simulations must execute faster than real time. In this paper, a scenario
refers to a predefined combination of operating conditions, input data, and objectives
under which the system under test is evaluated (e.g., charging demand profiles, elec-
tricity price signals, or grid constraints). Scenario-based testing thus means assessing
how the software behaves across such defined conditions. Some studies employ dis-
crete-time simulations [14, 15], yet there is little reported work on hybrid or temporally
adaptable designs that bridge discrete and real-time execution while preserving appli-
cation layer protocol fidelity. This is particularly limiting in domains where manage-
ment software must operate under both offline simulation and real-time deployment
constraints.

The literature also lacks a standardized framework for implementing SiL tests. Most
contributions focus on application-specific outcomes, e.g., improved energy dispatch
or controller tuning, without offering generalizable methods, architectures, validation
or verification procedures. The absence of such a framework impedes broader adoption
and prevents SiLL from being leveraged as a testing approach in future digital energy
systems.

Addressing these limitations requires new approaches to software design that ac-
commodate both accelerated and real-time execution, standardized interfaces to im-
prove interoperability, and methodological guidance for multi-agent, distributed, or
modular SiL testing in energy contexts. These developments are essential to support

4 C. Clausen et al.

rigorous, scalable validation of management software prior to deployment in critical
energy infrastructure.

3 Methodology
3.1 SiL Testing Framework

This paper applies the SiL testing framework proposed by Clausen [5]. Within this
framework, two interdependent components form a closed feedback loop: the energy
management system (EMS) and a simulation model. In a given test scenario, the EMS
retrieves data from the simulation model and applies its decision-making logic to sim-
ulated entities. During test execution, key performance indicators (KPIs) are collected
from both the EMS and the simulation model to assess the collective system perfor-
mance.

The framework emphasizes scenario-based testing, where predefined scenarios de-
fine the scope and structure of each test case. Tests are executed with the actual EMS
software and simulation components running in a closed-loop environment. Central to
the methodology is the simulation-based setup, where feedback between the EMS and
simulated environment replicates real-world interactions.

The framework supports both integration and system testing. Test scenarios evaluate
the behavior arising from EMS integration with the simulation model. Depending on
scenario complexity, tests may range from isolated functional checks to large-scale sys-
tem evaluations spanning hours, days, or weeks. The approach follows grey-box testing
principles, requiring insight into both external requirements (e.g., use cases) and inter-
nal architecture (e.g., timing, coordination logic, and communication protocols).

Validation and verification are both supported. During validation, the EMS is tested
against functional requirements in a rapid, discrete time environment. Verification then
ensures that further refinements continue to meet expectations in a real-time (wall-
clock) setting. Outputs from the validation stage act as a test oracle and baseline in the
verification stage.

3.2 SiL Testing Execution Modes

To validate the behavior of CSMS software before deployment, this study employs
back-to-back testing, utilizing two distinct execution modes to compare and ensure con-
sistency: (1) discrete time execution for rapid testing and (2) wall-clock-time execution
to mimic real-world deployment scenarios. The aim is to validate the CSMS by analyz-
ing its behavior across these two configurations.

e Discrete Time Execution. In this mode, the SiL testing environment operates
in discrete time using discrete-event simulation. The CSMS is instantiated
within the simulation runtime itself, sharing a single environment (i.e. the Java
Virtual Machine). This setup facilitates in-memory communication between
the simulation model and the CSMS via OCPP 2.0.1 messages while eliminat-
ing the need for a complete network stack. By advancing the simulation clock
deterministically and independently of wall-clock time, this approach enables

A SiL Testing Platform for OCPP-based EV Charging CSMSs 5

rapid testing under a wide range of conditions. It allows developers to evaluate
the scalability of their algorithms with potentially thousands of simulated
charging stations while focusing on application protocol correctness, message
handling, and algorithmic behavior.

e Wall-Clock-Time Execution. In this mode, the SiL testing environment simu-
lates real-world operating conditions by executing the CSMS as a standalone
system, separated from the simulation model. Communication occurs over a
network stack using OCPP 2.0.1, introducing realistic conditions such as con-
currency and asynchronous communication. The simulation runs in wall-clock
time, synchronized with system time, ensuring interactions mimic those of a
real deployed CSMS. This configuration enables evaluation of the CSMS's
performance, reliability, and robustness in handling real-world network con-
ditions.

The results from both configurations are compared as part of the back-to-back testing
process to ensure consistency and correctness. Discrepancies between the two modes
can reveal issues such as timing-related errors, protocol mismatches, or performance
bottlenecks, helping evaluate the system's readiness for deployment.

3.3 SiL Testing Platform Development

This paper applies the aforementioned SiL testing framework by developing a platform
to test a case study for EV smart charging strategies for residential home charging. The
aim of this platform is to demonstrate the utility of the SiL testing framework within an
energy ecosystem characterized by complex topologies and emergent behaviors, where
actors compete for access to a shared resource, namely the power grid.

The platform leverages an existing agent-based simulation model [16, 17] developed
in AnyLogic [18] which is connected to a management system using the OCPP 2.0.1
standard. The platform is described in more detail in the original case study [5]; in this
paper, it is presented in a condensed format.

4 Case Study

The case study involves EV smart charging for a residential area in Denmark. Smart
charging for EVs is an advanced approach to managing EV charging in a way that op-
timizes energy use, enhances grid stability, and aligns the driver’s charging preferences.
At its core, smart charging dynamically adjusts the charging rate of EVs based on real-
time grid conditions, electricity prices, and renewable energy availability to reduce both
costs and CO2 emissions. This flexibility enables efficient load management, reducing
loads on the power grid during peak demand periods through techniques like peak shav-
ing and demand response.

Denmark currently has 402.000 registered EVs (April 2025) [19] which corresponds
to about 17% of all domestic registered vehicles. With the current adoption rate the
number is expected to grow to 1 million EVs by 2030 [20]. EVs require installation of
charging infrastructure, and the number of charging stations (CSs) is expected to grow
proportionally to the number of EVs. A CS, also commonly known as a charge point,

6 C. Clausen et al.

is a power supply device that supplies electrical power for recharging plug-in electric
vehicles. The statistics of public available CSs are provided by the Danish Ministry of
Transport who reported around 11,000 public CSs in early 2023. A year later, primo
2024, the number almost doubled to 21,000 public CSs. By the end of 2024 the number
exceeded 31,000 CSs public [21]. Approximately 69 pct. of public CSs are normal
chargers (<22 kW), 18 pct. are fast chargers (23-99 kW), and 13 pct. are rapid chargers
(= 100 kW). There are no official statistics on the number of installed private chargers
because Denmark has no legislation that requires it to be registered. This number can
be roughly estimated with the number of registered EVs. Assuming that 20-35% of EV
owners have a privately owned CS, the estimated number ranges between 80,400 and
140,700 CSs.

This estimated growth threatens the future power grid stability which is solved partly
by expanding the grid’s capacity and by utilizing the grid’s current capacity more in-
telligently. Intelligent coordination in smart charging algorithms utilizes the EV
owner’s charging flexibility to allocate power grid resources in a way that avoids peak
loads.

The behavior of smart charging algorithms is critical to test because dysfunctional
behavior can affect power grid customers. A SiL testing platform based on the SiL
testing framework is developed to verify smart charging and system behavior in realis-
tic scenarios to ensure correct behavior prior to hardware- and field testing.

5 Platform Design and Implementation

5.1 Requirements

The following requirements were derived through experimental prototyping and itera-
tive development.

e RI1. Temporal Modality Support. The platform must support both discrete-
time and wall-clock time execution modes, enabling early-stage validation
with rapid feedback cycles and later-state verification under realistic temporal
constraints.

e R2. Interoperability. The platform must support standard application proto-
cols such as OCPP 2.0.1 to ensure realistic message exchange and compatibil-
ity with industry standards. This allows independently developed CSMSs to
coexist within a shared SiL testing environment, enabling holistic system-level
testing scenarios.

e R3. Abstracted Communication Layer. The platform must abstract parts of
the communication stack below the application protocol (e.g., transfer and
transport protocols). This enables validation at the application protocol level
without requiring the entire network stack, which reduces performance over-
head significantly.

e R4. Observability and Traceability. The platform must expose KPlIs, for ex-
ample, protocol message logs and time synchronization metrics, to validate
and verify a given test scenario.

A SiL Testing Platform for OCPP-based EV Charging CSMSs 7

5.2 Architecture

The SiL testing platform consists of the following principal components as shown in
Fig. 1. Each component is described below the figure.

Management System Simulation Model
(Java) (AnyLogic)
Application Protocol -~

(OCPP 2.0.1) CS Gateway m : Agents
' — os .

CSMS Gateway

""""""" T NN go

O MmOy

Strategy Clock

Fig. 1. Architecture of the SiL testing platform.

Simulation Model. Developing a simulation model requires significant efforts, and
therefore, this study reuses a previously validated simulation model. This model was
developed by the author’s colleagues Kristoffer Christensen and Magnus Verbak [16,
17]. The simulation model contains logic for charging stations (CSs), electric vehicles
(EVs), households, utilities, and market actors. It is implemented as an agent-based
discrete event simulation in AnyLogic 8.8.3, based on a combined and validated model
of a Danish residential district with 126 households equipped with home charging sta-
tions. Key features include various agent types (e.g., EVs, CSs, transformers), config-
urable parameters (e.g., scenario duration, EV types, PVs, load profiles), and realistic
behavior based on empirical data (e.g., EV arrival patterns, charging preferences). The
model supports both traditional and real-time pricing strategies and enables execution
of short- and long-term test scenarios in discrete time. Output data includes KPIs such
as load profiles and charging behavior, are exported in 10-minute resolution for post-
analysis to satisfy R4 (Observability and Traceability). The model supports external
Java libraries by importing JAR files, enabling the model to integrate with CSMSs via
OCPP 2.0.1.

Communication Layer (OCPP 2.0.1). A custom communication layer was imple-
mented to enable SiL testing using the OCPP 2.0.1 protocol. It is developed in Java 11
for compatibility with AnyLogic 8.8.3 and facilitates interoperability between CSMSs
and the simulation model. The design decouples application logic from the underlying
transport (e.g., WebSocket over TCP/IP) via an abstracted communication API. This
abstraction allows test scenarios to be executed with or without a full network stack for
validation or verification purposes.

The communication layer comprises four packages: (i) schemas, which provides
auto-generated Java classes from the official OCPP 2.0.1 JSON schemas; (ii) rpc,
which defines CALL, CALLRESULT, and CALLERROR message types with JSON se-
rialization support for generic payloads; (iii) api, which defines high-level interfaces
(e.g., CsmsEndpoint, CsEndpoint, and Session) for implementing CSMS and
CS application logic; and (iv) impl, which contains the logic to expose endpoints by
establishing bidirectional gateways for message exchange over the underlying
transport. In practice, the connection between the simulation model in AnyLogic and

8 C. Clausen et al.

the CSMS software is realized by importing the compiled communication layer as JAR
libraries into the AnyLogic model, allowing simulation agents to call the provided Java
interfaces directly. Charging station agents implement the CsEndpoint interface,
while the CSMS implements the CsmsEndpoint interface. At runtime, a gateway
agent binds these interfaces, enabling OCPP 2.0.1 messages to flow bidirectionally be-
tween simulated CSs and the CSMS either in-memory (discrete-time mode) or over the
network (wall-clock mode). This design satisfies requirement R2 (Interoperability) and
R3 (Abstracted Communication Layer).

Time Management and Scheduling. To support SiL testing across both discrete and
wall-clock time domains, a time management and scheduling library was developed in
Java 11. The library introduces a temporal abstraction via a TimeProvider interface
with two implementations: DiscreteTimeProvider and WallClockTime-
Provider. This abstraction allows the same application logic in the CSMS to operate
without modification in different temporal modes, supporting both rapid- and real-time
execution. A custom scheduler complements the temporal abstraction by mode-aware
task execution. The scheduler is single-threaded and utilizes a priority queue to ensure
time-ordered and FIFO execution. Concretely, the scheduler is responsible for all time-
dependent tasks in the CSMS, including OCPP protocol timers (e.g., timeouts), sched-
uled charging events, and state-machine transitions. Tasks are executed strictly in in-
creasing timestamp order, with FIFO behavior in case tasks have the same timestamp.
In discrete-time mode, the scheduler advances according to the simulation clock, en-
suring deterministic and reproducible results independent of wall-clock speed. In wall-
clock mode, the scheduler synchronizes with the system clock, which in turn is syn-
chronized to wall-clock time via the Network Time Protocol (NTP). By providing a
scheduling abstraction, the library satisfies requirement R1 (Temporal Modality Sup-
port).

Charging Station Management System. The CSMS is implemented in Java 11 and
integrates application logic, communication endpoints, scheduling, and state manage-
ment to support OCPP 2.0.1-based scenarios. It implements the CsmsEndpoint in-
terface and manages per-session state using a structured map of session data objects.
Communication with each CS is facilitated through proxy objects of the CsEndpoint
interface. Charging strategies (e.g., traditional and real-time pricing) are encapsulated
and can be configured depending on a given scenario.

The implementation uses a pluggable scheduler that operates in either discrete or
wall-clock time, depending on the test mode. Stateful protocol interactions are modeled
using statecharts, enabling management of transactional OCPP use cases such as Smart
Charging (K 15). Timed transitions are implemented via scheduled events, ensuring cor-
rect protocol sequencing and timeouts.

Charging Stations: Each CS is implemented as part of the AnyLogic 8.8.3 simulation
model and utilizes the OCPP 2.0.1 communication layer. Each CS implements the
CsEndpoint interface to handle incoming messages from its CSMS. Session bind-
ings are managed by a gateway agent, which maintains mappings between internal

A SiL Testing Platform for OCPP-based EV Charging CSMSs 9

charging station agents and their corresponding CsmsEndpoint message forwarder
proxy instances.

5.3 Hardware and Deployment

The SiL testing platform is deployed on server-grade hardware and consists of the fol-
lowing hardware components: CPU: Intel Xeon Silver 4214, 12 cores, 24 threads, 2.20
GHz base clock, 3.20 GHz turbo RAM: 96 GB DDR4, 2400 MHz, ECC. Hard Drive:
128 GB, 13.4 MB/s (4K random write), 423 MB/s (1 MB sequential write), 498 MB/s
(1 GB sequential write). Read speeds are not reported as they are insignificant for the
application, which primarily performs write operations. Network: 1 Gbit/s full duplex
switched network. OS: Ubuntu 20.04.1 LTS. Deployment depends on the execution
mode. In discrete-time execution mode, each CSMS is deployed within the same Java
Virtual Machine as the AnyLogic model to exploit in-memory communication with
minimal overhead. In wall-clock execution mode, each CSMS and the AnyLogic model
are deployed in a distributed environment with separate Docker containers that com-
municate over a full TCP/IP stack to reflect realistic deployment conditions.

6 Scenario Design

6.1 OCPP 2.0.1 Use Case

The following OCPP 2.0.1 use case is implemented in the SiL testing platform for
demonstration purposes.
o KI5 — Charging with load leveling based on High Level Communication
(Smart Charging) [22]: Tests the charging strategy as determined by the
CSMS.

6.2 Topology and EV Charging Strategies

The scenario is configured, as shown in Fig. 2, with two CSMSs that operate simulta-
neously and are configured in a one-to-many relationship with its provisioned CSs.
Each CSMS represents a CSO that manages a subset of 63 CSs (126 CSs in total) as
indicated by the simulation model configuration in Section 6.3. A CS is limited to
charging and connecting with a single EV at a time, thereby simulating a private home
charging setup.

Operator A employs a CSMS with a Traditional Charging Strategy that provides
unrestricted smart charging profiles to its managed CSs. With traditional charging, the
EV will charge as soon as it is plugged into the CS and continue charging until the
battery is full.

Operator B employs a CSMS with a Real-time Pricing Strategy that optimizes the
charging profile of each EV according to the preferred departure time, charging param-
eters, and hourly electricity spot prices. The EV and driver provide the departure time
and charging parameters to perform this optimization.

10 C. Clausen et al.
Multi-CSMS and Multi-CS Topology)
IS0 15118-1 N
OCPP 2.0.1 B|

< v I

5 N

© «System» 1 \ * «System»

[CSMs cs

) Traditional Charging Traditional Charging

m

S

® «System» 1 * «System»

g csms cs

() Real-time Pricing Real-time Pricing

Fig. 2. The SiL testing topology featuring multiple CSMSs and CSs [5].

6.3 Simulation Model Configuration

The simulation model is treated as the tool responsible for simulating the entire envi-
ronment except for the CSMS. The model parameters and settings are listed in Table 1.
For a detailed description of each parameter, e.g. the driving distance model or EV

model, the reader is referred to the original

Table 1. Simulation Model Configuration [5].

work [16].

Parameter

Setting

Charging infrastructure
Number of domestic consumers
Scenario start date

Scenario end date

Scenario duration

Maximum allowed number of EVs at
a domestic consumer

Maximum allowed number of CSs at a
domestic consumer

Domestic consumer baseload data

Total number of CSs
Driving distance per trip

First possible departure hour
Last possible departure hour
First possible arrival hour
Last possible arrival hour

Private home charging in Mode 3 [23]
126

2024/01/01 00:00:00 UTC +1
2024/01/08 00:00:00 UTC +1

7 days

1

Embedded in the simulation model’s dataset.
Based on real consumption data.
126. Each consumer has one installed.

Embedded in the simulation model’s dataset.
Generated based on a probability distribution.
05:00

09:00
14:00
22:00

A SiL Testing Platform for OCPP-based EV Charging CSMSs 11

Parameter Setting

EV models Embedded in the simulation model’s dataset.
This includes battery capacity, charging power,
etc.

CS models Embedded in the simulation model’s dataset.

Number of electricity suppliers 1

Number of CS suppliers 1

EV charging strategy 50/50 split of:

63 consumers with Real-time pricing
63 consumers with Traditional charging

Total grid capacity (transformer capacity) 400 kVA

Household capacity 17.3 kVA

CS maximum charging capacity 11 kW (three phases, 400V, 16A)

Electricity costs model Embedded in the simulation model’s dataset.

Based on real hourly rates from Nord Pool spot
market (DK 1) and the Danish Tariff model 3.0.

In discrete time execution mode, the simulation model is responsible for time synchro-
nization with the CSMS. In wall-clock-time execution mode, a custom feedback sched-
uling mechanism is implemented in AnyLogic to synchronize its virtual clock automat-
ically [5, 24]. The internal feedback scheduling mechanism relies on a Proportional-
Integral-Derivative (PID) controller that adjusts the simulation’s real-time scale, corre-
sponding to a virtual speeder, based on the model’s time drift. A timed event triggers
PID updates every 10 ms, balancing responsiveness with CPU load.

7 Results

This section presents the results of the two SiL test scenarios: discrete-time SiL and
wall-clock-time SiL. The Simulation KPIs are presented first followed by the ex-
changed OCPP 2.0.1 messages, and finally the SiL performance metrics.

7.1 Simulation Model KPIs

Fig. 3 illustrates the KPIs for EV charging behavior recorded during the SiL test, span-
ning from 00:00 on January 1st, 2024, to 00:00 on January 8th, 2024. The data is di-
vided into two groups. The first group represents consumers managed by the CSMS
following the traditional charging strategy, while the second group represents consum-
ers managed by the CSMS using the real-time pricing strategy. The raw electricity spot
price is included to reflect its impact on the number of EVs charging under the real-
time pricing strategy.

o Traditional charging strategy. This strategy charges each EV immediately
when the driver arrives home and plugs it into the CS during the daily period
from 14:00 to 01:00. The strategy charges each EV continuously until its bat-
tery is full, without considering the electricity spot price. This consistent
charging behavior is reflected in the plot across all days.

12 C. Clausen et al.

e Real-time pricing strategy. This strategy calculates the optimal charging
schedule for each EV based on the hourly electricity spot prices to minimize
total charging costs. It respects the EV driver’s expected departure time as a
constraint. The plot reveals this behavior through nightly surges in charging
activity, typically occurring between 23:00 and 05:00. Charging is scheduled
during hours with the lowest prices, leading to temporary pauses and later re-
sumptions when prices drop. This results in cost savings and is depicted in the
plot as midnight spikes in charging activity, followed by drops, and then
smaller surges during the night and early morning.

Load and Charging Data
Charging Load (Real-time Pricing) [kW] ----= Charging Load (Traditional Charging) [kW]
of charging EVs (Real-time Pricing) # of charging EVs (Traditional Charging)
Raw spot price [DKK/kWh]

80

=)
N
@

500

o
)

60
400

300

40

Load [kW]

o

200

Number of ghargmg EVs
2 <

=3
=)
@

100

Raw Spot Price [DKK/kWh]

o
o

0 g o111 N L
Jan1 Jan2 Jan4 Jan5

2024

Timestamp

Fig. 3. KPIs for the EV charging behavior in the AnyLogic simulation model [5].

The two datasets were compared, and differences were found between the two datasets:
o Time-dependent KPIs. This analysis includes output variables calculated by
the simulation model as functions of time, such as the EV’s state-of-charge.
The resulting floating-point values showed insignificant discrepancies within
the range [0, 10™*]. These discrepancies arise from time differences inherent
in wall-clock SiL testing, where measurements are not perfectly synchronized,
unlike in discrete-time SiL testing. However, all remaining time-independent
KPIs were identical.
o Number of Charging EVs. This KPI measures the number of EVs charging at
a given time. On January 5%, 2024, at 15:50, the wall-clock SiL test recorded
one additional charging EV compared to the discrete-time SiL test. After ana-
lyzing this discrepancy with a simulation model developer, it was concluded
that the EV state-of-charge was identical in both tests. This behavior was iden-
tified as a bug in the measurement logging approach within the simulation
model.
In summary, the simulation KPIs from both discrete-time and wall-clock time SiL tests
exhibit similar EV charging behavior.

7.2 OCPP 2.0.1 Message Exchange

This section presents the results of the OCPP 2.0.1 messages exchanged during the
wall-clock time SiL test. In wall-clock execution, communication occurs over a full
TCP/IP stack, which makes it possible to observe network-related effects such as

A SiL Testing Platform for OCPP-based EV Charging CSMSs 13

transmission delays, message reordering, and potential packet loss. In practice, no mes-
sage losses were observed under the tested conditions, but the platform can capture
them through protocol logs if they occur. A similar analysis was not conducted for the
discrete-time SiL test because, in this setup, OCPP 2.0.1 messages are exchanged di-
rectly in memory within the simulation environment, bypassing the TCP/IP stack en-
tirely.

Use Case: K15 — Smart Charging. Every EV in the simulation model is configured to
charge once a day. Once an EV is plugged in a CS the use case “K15” is activated, and
the CSMS sends a charging profile to the CS. Therefore, the expected number of ex-
changed charging profiles (Nepgrgingprofites) 1S given by:

Nchargingprofites = ¢ X d = 126 X 7 = 882 (1)

where:
e ¢ =number of CSs,
e d =number of days.

The collected data confirms that the expected number of SetChargingProfile-
Request and SetChargingProfileResponse were successfully exchanged
during the SiL test. While the raw dataset is not reproduced here, it is documented in
detail in [5]. This means that the stateful charging behavior is working as expected,
because a SetChargingProfileRequest is sent to a CS if, and only if, the state
transitions correctly.

Fig. 4 depicts the charging behavior of a sample CS managed by the Real-time Pric-
ing CSMS. The transaction state alternates between ‘Started’ and ‘Ended’, determined
by the payload of the TransactionEventRequest sent from the CS to the CSMS when
the charging cable is connected. The figure demonstrates that the CS charges the EV
multiple times within the same transaction, as indicated by fluctuations in the charging
load. The transaction state remains as ‘Started’ because the SiL test ended at midnight
between January 7" and January 8.

Fig. 5 illustrates the charging behavior of a sample CS managed by the Traditional
Charging CSMS. As with Real-time Pricing, the transaction state alternates between
‘Started’ and ‘Ended’ based on the TransactionEventRequest payload. In this
case, the CS begins charging the EV immediately upon being plugged in by the driver
and stops when the EV's battery is fully charged. Consequently, the charging load aligns
directly with the ‘Started’ and ‘Ended’ transaction events, contrasting with the behavior
observed under Real-time Pricing.

14 C. Clausen et al.

Transaction Events with Real-time Pricing
— Transaction State === Charging Load (Real-time Pricing) [kW]

Started o
10 E
= 0N
< g
T 5 O
© ©
] 0
) C
°
0 Ended

Jan1 Jan2 Jan3 Jan4 Jan5 Jan6 Jan7

2024
Timestamp
Fig. 4. Transaction events with the Real-Time Pricing strategy [5].
Transaction Events with Traditional Charging
—— Transaction State === Charging Load (Traditional Charging) [kW]

Started o
10 E
= (%]
< g
T 5 o
© ©
o %]
- C
C
0 Ended

Jan1 Jan2 Jan3 Jan 4 Jan5 Jan 6 Jan7

2024
Timestamp

Fig. 5. Transaction events with the Traditional Charging strategy [5].

7.3 SiL Execution Metrics

This section contains the results and analysis for the following SiL performance met-
rics:

o Simulation model time drift and real-time scale over time. These metrics evalu-
ate the performance of the PID controller agent described in Section 6.3. and its
robustness in synchronizing the simulation model with wall-clock time.

e Execution times of the discrete-time and wall-clock-time SiL tests. These meas-
urements provide a comparative assessment of the two SiL testing approaches.

Simulation Model Time Drift and Real-time Scale Over Time. The AnyLogic sim-
ulation model synchronizes wall-clock time using a PID controller to ensure consistent
timing behavior during execution. Fig. 6 illustrates the PID controller's behavior during
the startup phase of the simulation. Ideally, the time drift (T4i5¢) is 0, indicating perfect
synchronization between the simulation model and wall-clock time. If Ty < 0, the
simulation model lags behind wall-clock time, whereas Ty, > 0 indicates the

A SiL Testing Platform for OCPP-based EV Charging CSMSs 15

simulation model running ahead of it. At AnyLogic’s startup, Ty, initially drops be-
low -30,000 ms, even though the real-time scale (RT4;) is set to a maximum value of
10 times wall-clock time. This temporary desynchronization occurs due to the initiali-
zation of internal agents and AnyLogic's single-threaded computational model. After
this initialization phase, T4.;r+ approaches 0. By approximately 33 seconds, the PID

controller adjusts RT.q; to compensate for the drift, stabilizing Tg,;; at 0 and achiev-
ing synchronization.

AnyLogic Simulation Model - Time Drift During the Startup Phase
Time drift [ns] —— AnyLogic real-time scale ‘%
_ ——————30e-3 §
é Idegl time drift (0) [ms]) \\ g
& -10K 2.0e-3 Z
5 \ g
o 204 \ 10e-3 S
g Idepl real-time scgle (2.7778e4))
= 30— — =+ - - - 4 B [T T e R T - le)
19 o 19 o o o o o o 000,
0, 0 0, 0 0, 0 0 0 0. c

“0p, 0 0 0 “0p. 0 0 0 2}
S Qop Pos g zs 0 P2e O3 3 % <

Qoeq
Timestamp

Fig. 6. AnyLogic Simulation Model: Time-drift during the startup phase [5].

Fig. 7 depicts the behavior of Tg,.;¢, and RTscqe throughout the duration of the wall-
clock SiL test. Frequent positive and negative spikes in Ty.;f¢ are observed, with the
PID controller dynamically adjusting RT.4;, to maintain synchronization between the
AnyLogic simulation model and wall-clock time. Despite significant negative spikes in
Tarift» the PID controller demonstrates robustness, successfully preserving synchroni-
zation. The negative spikes in Ty, ¢, are likely caused by intensive computations or
discrete events within AnyLogic that temporarily delay the execution of other opera-
tions. Conversely, positive spikes may result from PID overshooting during corrective
adjustments.

Fig. 8 presents a histogram of the Ty,¢, distribution, based on 20,049 observations
(N7, o= 20,049). Notably, 97% of the observations fall within the range of +3 ms,
with the remaining 3% outside this interval. This level of deviation is considered ac-

ceptable because the scenario does not have stringent time-critical requirements for the
wall-clock SiL test.

16 C. Clausen et al.

AnyLogic Simulation Model - Time Drift and Real-time Scale
Time drift [ms] —— AnyLogic real-time scale
[
©
(o]
b 20 TRy m”nlu L aladl .LALL\ m.u.uL N TRERNP || Y WTSRRTAN T A I 1 ..hlmu} L b \mn,m‘,‘ 3.0e-4 n
g 1 deal real-time §cale (2.77/8e4) g
— Ideal time driftl(0 [ms]) =
Y | v LU s e Bk e b e o ol i s (b 0 L 2.0e-4 T
— ©
o (]
by i
g 20 1.0e-4 -5
-40] c
0.0e+0
Jan1 Jan 2 Jan3 Jan4 Jan5 Jan 6 Jan7 N <
2024
Timestamp
Fig. 7. AnyLogic Simulation Model: Time-drift and real-time scale [5].
AnyLogic Simulation Model - Time Drift Distribution
30 ‘
0, 30%)_ (112806)
25
)
80 20)
2 (-1, 16%
o 15 0
g || @ 1p%
& 19
! (A5 D
(13, 2% LB
I 1 I I] I U U U I I 1 I I] !] | I ON B OO = = = = 2 NN
W W wwwNNNNN= = 2 0 O O N B OYOOONDB®MO
00O B~ NOOWOPRENOOWORANO
Time drift [ms]

Fig. 8. AnyLogic Simulation Model: Time drift distribution [5].

Execution times of the discrete-time and wall-clock-time SiL tests. Table 2 presents
the execution times for the discrete-time and wall-clock-time SiL tests. The discrete-
time SiL test completed the 7-day simulation scenario in 1 minute and 49 seconds. In
contrast, the wall-clock-time SiL test synchronizes its ticks with wall-clock time and
the scenario takes 7 days to execute.

The difference in execution times highlights a trade-off between SiL fidelity and
performance. Increasing the fidelity of the SiL test has a substantial impact on execution
time. However, the discrete-time SiL test offers significant advantages, as it enables the
testing of long-term scenarios in a fraction of the time required by wall-clock SiL tests.

The execution time of the wall-clock-time SiL test could potentially be reduced by
employing an accelerated wall-clock time provider from the time management frame-
work outlined in Section 5.2. However, this approach may necessitate tuning the PID
controller in the AnyLogic simulation model to accommodate the accelerated mode.
Additionally, the acceleration increases the frequency of exchanged OCPP 2.0.1

A SiL Testing Platform for OCPP-based EV Charging CSMSs 17

messages, potentially leading to network congestion. Therefore, this approach should
be investigated in future studies.

Table 2. Execution times of the SiL tests [5].

Test Scenario Execution time

Discrete time Tstare = 2024/11/26 15:09:29
Tena = 2024/11/26 15:11:18
Tiotar = Tena — Tstare = 1M 49s

Wall-clock time Tstare = 2024/11/26 17:55:16
Tena = 2024/12/03 17:55:19
Ttotat = Tena — Tstare = £d Oh Om 3s

8 Discussion

The presented SiL testing platform successfully addresses several limitations identified
in the literature on validation and verification of EV CSMSs, particularly those relying
on the OCPP 2.0.1 protocol. The platform demonstrates practical utility in enabling
scenario-based testing across both discrete-time and wall-clock-time execution modes,
a feature absent in most existing SiLL approaches in the energy domain.

From a functional perspective, the platform met its design requirements, including
support for dual temporal modalities (R1), interoperability with standardized protocols
(R2), abstracted communication layers (R3), and observability of system behavior
(R4). The use of an agent-based simulation environment integrated with real-world data
on electricity pricing and EV driving patterns provided a high degree of realism, facil-
itating meaningful performance evaluation.

In discrete-time mode, the platform enabled rapid testing and iteration of control
strategies, completing a 7-day simulation in under 2 minutes. This speed advantage is
particularly valuable for development workflows requiring frequent regression testing
or optimization across large parameter spaces. Wall-clock-time testing, while signifi-
cantly slower, offered high-fidelity evaluation of protocol-level behavior under realistic
timing and concurrency conditions. The successful back-to-back validation of control
logic across both modes confirms the platform’s capability to reuse the same CSMS
implementation without modification, which is critical for bridging development and
deployment workflows.

The message exchange analysis confirmed full protocol compliance, with correct
sequencing and successful transmission of OCPP 2.0.1 messages across 126 charging
stations. Minor discrepancies in state-of-charge values and charging EV counts be-
tween time modes were traced to the simulation model’s logging mechanisms rather
than flaws in the CSMS or communication layer, underlining the importance of robust
KPI instrumentation in simulation models.

While comparable platforms are scarce in academic literature, this work demon-
strates that the combination of standardized protocols and dual-time execution in SiL
testing is not only feasible but also essential for ensuring that smart charging systems

18 C. Clausen et al.

can scale reliably within real-world energy ecosystems. The findings imply that similar
approaches can be generalized to other domains involving DERs and protocol-driven
management software, including home energy management and microgrid systems.

9 Conclusion and Future Work

This paper introduced a standards-compliant, dual-mode SiL testing platform for vali-
dation and verification of OCPP 2.0.1-based EV CSMSs. The platform enables switch-
ing between discrete-time simulation for development and wall-clock-time execution
for high-fidelity verification, offering a consistent environment for testing smart charg-
ing strategies in a simulated residential setting.

The case study involving 126 private home charging stations in Denmark demon-
strated that the same CSMS logic could be tested across temporal domains, achieving
protocol integrity, scalability, and timing accuracy. Key performance results include
sub-2-minute execution for a 7-day scenario in discrete-time mode and minimal time
drift in wall-clock mode, with over 97% of observations within +3 ms. This hybrid
testing approach enables efficient exploration of system behavior under both acceler-
ated and real-time constraints, thereby supporting more robust control software devel-
opment for EV infrastructure.

The main contribution of this work lies in operationalizing SiL testing with OCPP
2.0.1 compliance, showing that tested CSMS software can be transferred between test-
ing and deployment contexts. The platform also establishes a reusable methodology for
future research on SiL testing for energy management systems.

Acknowledgments. This paper is part of the Digital Energy Hub project, funded by the Danish
Industry Foundation, and IEA EBC Annex 96 - Grid Integrated Control of Buildings (EUDP no.
Jonr. 134251-549133).

Author Contributions. Based on the CRediT (Contributor Roles Taxonomy). CSBC: Concep-
tualization, methodology, software, formal analysis, investigation, writing - original draft, Writ-
ing — review & editing, visualization. BNJ: Supervision, writing- review and editing, project
administration. ZGM: Supervision, project administration, funding acquisition.

Conflict of Interests. The authors declare the following potential conflict of interest: BNJ serves
as General Co-chair and ZGM serves as Program Co-chair and Publication Chair of the ‘Energy
Informatics.Academy Conference 2025 (EL.A 2025)’. To avoid any bias, the paper review and
acceptance decision were handled independently of these authors’ conference roles.

Ethics Approval. Not applicable.

Data and Source Code Availability. Access may be granted upon request, subject to institu-
tional and project-specific policies.

A SiL Testing Platform for OCPP-based EV Charging CSMSs 19

References

(1]

(2]

[6]

[7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

(2020). COMMUNICATION FROM THE COMMISSION TO THE EUROPEAN
PARLIAMENT, THE COUNCIL, THE EUROPEAN ECONOMIC AND SOCIAL
COMMITTEE AND THE COMMITTEE OF THE REGIONS Powering a climate-
neutral economy: An EU Strategy for Energy System Integration. [Online] Available:
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=COM:2020:299:FIN

Open Charge Point Protocol (OCPP) 2.0.1, Open Charge Alliance, 2024. [Online].
Available: https://openchargealliance.org/my-oca/ocpp/

C. S. B. Clausen, B. N. Jorgensen, and Z. G. Ma, "A scoping review of In-the-loop
paradigms in the energy sector focusing on software-in-the-loop," Energy Informatics,
Journal article vol. 7, no. 12, 2/27 2024, doi: 10.1186/s42162-024-00312-8.
1012-2024 - IEEE Standard for System, Sofiware, and Hardware Verification and
Validation, 2025.

C. S. B. Clausen, "A Software-in-the-loop Testing Framework for Energy Management
Systems," ed: Syddansk Universitet. Det Tekniske Fakultet, 2025.

I. Raghupatruni, T. Goeppel, M. Atak, J. Bou, and T. Huber, "Empirical Testing of
Automotive Cyber-Physical Systems with Credible Software-in-the-Loop
Environments," International Conference on Connected Vehicles and Expo, 2019.

M. A. Taut, G. Chindris, and A. C. Taut, "Software-in-the-Loop System for Motor
Control Algorithms," International Symposium for Design and Technology in
Electronic Packaging, pp. 419--426, 2019.

B.A. M, Z. L, and A. M, "Software In the Loop Simulation for Robot Manipulators,"
ENGINEERING TECHNOLOGY AND APPLIED SCIENCE RESEARCH, vol. 7, no.
5, pp. 2017--2021, 2017.

C. A. V. Guerrero et al., "A New Software-in-the-Loop Strategy for Real-Time Testing
of a Coordinated Volt/Var Control," pp. 6--10, 2016.

C. A. V. Guerrero, P. M. Silveira, and J. M. C. Filho, "Adaptation of the clonal selection
algorithm to the real-time coordinated Volt/V Ar control through a software-in-the-loop
strategy," Electric Power Systems Research, vol. 194, 2021, doi:
10.1016/j.epsr.2021.107092.

F. a. Bonassi, "Software-in-the-loop testing of a distributed optimal scheduling strategy
for microgrids' aggregators," IEEE PES Innovative Smart Grid Technologies
Conference Europe, pp. 985--989, 2020.

M. Huber, C. Bons, and D. Mueller, "Exergetic evaluation of solar controller using
Software-In-The-Loop method," Energy Procedia, vol. 48, pp. 850--857, 2014, doi:
10.1016/j.egypro.2014.02.098.

H. T. Nguyen, G. Yang, A. H. Nielsen, and P. H. Jensen, "Hardware- and Software-in-
the-Loop Simulation for Parameterizing the Model and Control of Synchronous
Condensers," leee Transactions on Sustainable Energy, vol. 10, no. 3, pp. 1593--1602,
2019, doi: 10.1109/TSTE.2019.2913471.

O. Frotscher et al., "Software-in-the-Loop-simulation of a District Heating System as
Test Environment for a Sophisticated Operating Software," pp. 223--230, 2019, doi:
10.5220/0007809602230230.

https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=COM:2020:299:FIN
https://openchargealliance.org/my-oca/ocpp/

20

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

C. Clausen et al.

V. Osadcuks and A. Galins, "Software in the Loop Simulation of Autonomous Hybrid
Power System of an Agricultural Facility," Engineering for Rural Development, pp.
500--505, 2012.

K. Christensen, "Multi-Agent Based Simulation Framework for Evaluating Digital
Energy Solutions and Adoption Strategies," Ph.D. thesis, Syddansk Universitet. Det
Tekniske Fakultet, 2022.

M. Verbak, "Agent-Based Framework for Simulating Evolution of Distributed Energy
Resources in Energy Systems," ed: Syddansk Universitet. Det Tekniske Fakultet, 2022.
A. Borshchev, The Big Book of Simulation Modeling: Multimethod Modeling with
AnyLogic 6. 2013.

Danmarks Statistik. "Der er nu over 400.000 elbiler pa de danske veje." Danmarks
Statistik. https://www.dst.dk/da/Statistik/nyheder-analyser-
publ/nyt/NytHtml?cid=49510 (accessed July 2025.

Klimaradet, "Kendte veje og nye spor til 70 procents reduktion," 2020/03 2020.
[Online]. Available: https://klimaraadet.dk/sites/default/files/imorted-
file/70_pct_analyse endelig.pdf

The Danish Ministry of Transport, "Udvikling i ladeinfrastruktur og bestand af el- og
plug-in-hybridbiler," 2024. Accessed: January, 2025. [Online]. Available:
https://www.trm.dk/media/xw3dloqy/ladeinfrastruktur-og-opladelige-biler-1-kvartal-
2024-a.pdf

Open Charge Alliance, "OCPP 2.0.1 Part 2: Specification (Edition 2)," p. 274, 2023.
[Online]. Available: https://openchargealliance.org/my-oca/ocpp/.

DS/EN IEC 61851-1:2019 Electric Vehicle Conductive Charging System — Part 1:
General requirements, International Electrotechnical Commission, 2017. [Online].
Available: https://webshop.ds.dk/standard/M298491/ds-en-iec-61851-1-2019

L. Sha et al., "Real Time Scheduling Theory: A Historical Perspective," Real-Time
Systems, vol. 28, pp- 101-155, 11/01 2004, doi:
10.1023/B:TIME.0000045315.61234.1e.

https://www.dst.dk/da/Statistik/nyheder-analyser-publ/nyt/NytHtml?cid=49510
https://www.dst.dk/da/Statistik/nyheder-analyser-publ/nyt/NytHtml?cid=49510
https://klimaraadet.dk/sites/default/files/imorted-file/70_pct_analyse_endelig.pdf
https://klimaraadet.dk/sites/default/files/imorted-file/70_pct_analyse_endelig.pdf
https://www.trm.dk/media/xw3dloqy/ladeinfrastruktur-og-opladelige-biler-1-kvartal-2024-a.pdf
https://www.trm.dk/media/xw3dloqy/ladeinfrastruktur-og-opladelige-biler-1-kvartal-2024-a.pdf
https://openchargealliance.org/my-oca/ocpp/
https://webshop.ds.dk/standard/M298491/ds-en-iec-61851-1-2019

