
Bridging Rapid Simulation and Real-Time Execution: A

Software-in-the-Loop Testing Platform for OCPP-Based

EV Charging Station Management Systems

Christian Skafte Beck Clausen [0000-0003-3118-7253], Bo Nørregaard Jørgensen [0000-0001-5678-

6602] and Zheng Grace Ma [0000-0002-9134-1032]

SDU Center for Energy Informatics, Maersk Mc-Kinney Moeller Institute, The Faculty of En-

gineering, University of Southern Denmark, Odense, Denmark
zma@mmmi.sdu.dk

Abstract. Electric vehicle (EV) charging management systems require scalable

and standards-compliant coordination across distributed infrastructures. How-

ever, current testing approaches often lack the flexibility to support both acceler-

ated development workflows and high-fidelity real-time validation. This paper

presents a dual-mode Software-in-the-Loop (SiL) testing platform for validating

EV Charging Station Management Systems (CSMSs) that communicate using

the Open Charge Point Protocol (OCPP) 2.0.1. The platform enables the same

CSMS software to be evaluated across discrete-time and wall-clock-time modes

without modification, supporting rapid scenario testing and protocol-accurate

verification. A case study involving 126 home charging stations in Denmark

evaluates two smart charging strategies under real-world electricity pricing and

demand conditions. Results show that discrete-time testing enables rapid perfor-

mance evaluation, while wall-clock execution maintains protocol fidelity with

minimal time drift. The platform offers a robust and reusable method for validat-

ing EV charging software and can support future applications involving distrib-

uted energy resources (DERs), smart grids, and cyber-physical energy systems.

Keywords: Software-in-the-Loop (SiL) Testing, Charging Station Management

System (CSMS), Open Charge Point Protocol (OCPP 2.0.1), Smart Charging,

Validation and Verification (V&V), Simulation, Electric Vehicle (EV) Charg-

ing, Energy Management System (EMS), Smart Grid, Distributed Energy Re-

sources (DER)

1 Introduction

The electrification of road transport is widely seen as a critical enabler for reducing

greenhouse gas emissions [1]. However, this transition poses significant challenges for

system operators and market actors alike, as large-scale integration of EVs increases

the complexity and variability of both local and system-wide electricity demand. In this

context, management systems for EV charging are essential for aligning flexible charg-

ing behavior with user preferences, grid constraints, and market signals.

mailto:zma@mmmi.sdu.dk

2 C. Clausen et al.

The deployment of these systems increasingly depends on standardized communi-

cation protocols to ensure interoperability across hardware and software vendors. One

such protocol, the Open Charge Point Protocol (OCPP), has emerged as a de facto

standard for managing interactions between charge stations (CSs) and CS management

systems (CSMSs). The recent OCPP 2.0.1 specification [2] introduces enhanced capa-

bilities for smart charging, security, and extensibility, but also increases complexity in

terms of control logic, timing, and asynchronous communication.

To ensure that such systems behave reliably under diverse and dynamic operating

conditions, Software-in-the-loop (SiL) testing has gained traction as a method for vali-

dating real-world control software against simulated environments. SiL allows devel-

opers to execute and evaluate software logic prior to deployment, bridging the gap be-

tween purely analytical validation and hardware testing [3]. However, the majority of

SiL approaches in the energy domain tend to either operate exclusively in real time,

making them unfit for iterative development workflows with rapid feedback or for val-

idating communication-centric applications using real-world application protocols like

OCPP.

In particular, support for both discrete (accelerated execution) and real-time (wall-

clock execution) domains while maintaining application protocol fidelity is not yet

widely supported across existing platforms. Moreover, previous SiL testing studies of-

ten simplify the communication layer by using non-standard application protocols.

However, such approximations are inadequate for reusing the same management soft-

ware in a more refined deployment environment for verification purposes.

According to IEEE Standard 1012-2024 [4], validation concerns whether the right

system is being built, while verification ensures it is built correctly. The proposed SiL

platform addresses both: discrete-time execution enables domain experts to rapidly val-

idate system behavior in simulated environments, whereas wall-clock execution facili-

tates verification in a refined deployment environment that resembles realistic condi-

tions, particularly communication and timing aspects. This dual perspective aligns with

established engineering principles, such as the V-model in automotive development,

and extends them to the energy informatics domain.

This paper addresses these limitations by presenting a Software-in-the-loop testing

platform for EV CSMSs based on previous work [5]. The platform allows the same

CSMS software to operate either against a simulated environment in discrete time or in

real time using OCPP 2.0.1 message exchanges. The proposed approach enables rapid

scenario testing during development and high-fidelity testing during verification, en-

suring that systems perform consistently across execution modes. The platform is eval-

uated through a case study based on Danish household charging, incorporating real

driving patterns, market prices, and charging strategies.

2 Literature Review

In-the-loop paradigms are widely used to verify control logic across abstraction levels

in complex systems [3]. These paradigms include Model-in-the-Loop (MiL), Software-

in-the-Loop (SiL), Processor-in-the-Loop (PiL), and Hardware-in-the-Loop (HiL),

each supporting different phases of system development. MiL is primarily used in

 A SiL Testing Platform for OCPP-based EV Charging CSMSs 3

early-stage validation where the controller and plant models are both simulated, often

using tools like MATLAB/Simulink or Modelica. PiL executes compiled controller

code on target processors to evaluate timing behavior. HiL integrates physical compo-

nents with simulated environments to test hardware-software integration under real-

time constraints. While HiL is critical for final-stage testing, it introduces significant

cost and complexity.

SiL, in contrast, offers a balance between fidelity and flexibility. It executes real-

world control logic against a simulation model and supports closed-loop evaluation

without physical hardware. SiL has been widely applied in domains such as automotive

control [6, 7], robotics [8], and renewable energy systems [9]. In energy applications,

SiL supports testing of control strategies for Volt/Var regulation [10], dispatch algo-

rithms [11], and solar thermal systems [12]. Real-time digital simulators like RTDS and

platforms such as TRNSYS and Dymola are often used to represent the virtual plant,

while control logic is implemented in environments like MATLAB or AMESIM [13].

Despite its potential, SiL remains underutilized in the energy sector. Most studies

examine single-controller, single-model scenarios, limiting insights into how SiL might

scale to m-to-n configurations such as energy management systems coordinating mul-

tiple DERs. Moreover, interoperability issues persist in SiL testing. Components such

as controllers and simulation models are often built using different software tools and

communication protocols like TCP/IP or OPC UA [13]. These differences in commu-

nication methods, data formats, and software environments make it difficult to connect

systems and ensure valid operation within a unified simulation setup prior to verifica-

tion.

Accelerated SiL testing is another area with limited methodological coverage. To

enable long-duration scenario analysis, such as annual grid operation or EV charging

patterns, SiL simulations must execute faster than real time. In this paper, a scenario

refers to a predefined combination of operating conditions, input data, and objectives

under which the system under test is evaluated (e.g., charging demand profiles, elec-

tricity price signals, or grid constraints). Scenario-based testing thus means assessing

how the software behaves across such defined conditions. Some studies employ dis-

crete-time simulations [14, 15], yet there is little reported work on hybrid or temporally

adaptable designs that bridge discrete and real-time execution while preserving appli-

cation layer protocol fidelity. This is particularly limiting in domains where manage-

ment software must operate under both offline simulation and real-time deployment

constraints.

The literature also lacks a standardized framework for implementing SiL tests. Most

contributions focus on application-specific outcomes, e.g., improved energy dispatch

or controller tuning, without offering generalizable methods, architectures, validation

or verification procedures. The absence of such a framework impedes broader adoption

and prevents SiL from being leveraged as a testing approach in future digital energy

systems.

Addressing these limitations requires new approaches to software design that ac-

commodate both accelerated and real-time execution, standardized interfaces to im-

prove interoperability, and methodological guidance for multi-agent, distributed, or

modular SiL testing in energy contexts. These developments are essential to support

4 C. Clausen et al.

rigorous, scalable validation of management software prior to deployment in critical

energy infrastructure.

3 Methodology

3.1 SiL Testing Framework

This paper applies the SiL testing framework proposed by Clausen [5]. Within this

framework, two interdependent components form a closed feedback loop: the energy

management system (EMS) and a simulation model. In a given test scenario, the EMS

retrieves data from the simulation model and applies its decision-making logic to sim-

ulated entities. During test execution, key performance indicators (KPIs) are collected

from both the EMS and the simulation model to assess the collective system perfor-

mance.

The framework emphasizes scenario-based testing, where predefined scenarios de-

fine the scope and structure of each test case. Tests are executed with the actual EMS

software and simulation components running in a closed-loop environment. Central to

the methodology is the simulation-based setup, where feedback between the EMS and

simulated environment replicates real-world interactions.

The framework supports both integration and system testing. Test scenarios evaluate

the behavior arising from EMS integration with the simulation model. Depending on

scenario complexity, tests may range from isolated functional checks to large-scale sys-

tem evaluations spanning hours, days, or weeks. The approach follows grey-box testing

principles, requiring insight into both external requirements (e.g., use cases) and inter-

nal architecture (e.g., timing, coordination logic, and communication protocols).

Validation and verification are both supported. During validation, the EMS is tested

against functional requirements in a rapid, discrete time environment. Verification then

ensures that further refinements continue to meet expectations in a real-time (wall-

clock) setting. Outputs from the validation stage act as a test oracle and baseline in the

verification stage.

3.2 SiL Testing Execution Modes

To validate the behavior of CSMS software before deployment, this study employs

back-to-back testing, utilizing two distinct execution modes to compare and ensure con-

sistency: (1) discrete time execution for rapid testing and (2) wall-clock-time execution

to mimic real-world deployment scenarios. The aim is to validate the CSMS by analyz-

ing its behavior across these two configurations.

• Discrete Time Execution. In this mode, the SiL testing environment operates

in discrete time using discrete-event simulation. The CSMS is instantiated

within the simulation runtime itself, sharing a single environment (i.e. the Java

Virtual Machine). This setup facilitates in-memory communication between

the simulation model and the CSMS via OCPP 2.0.1 messages while eliminat-

ing the need for a complete network stack. By advancing the simulation clock

deterministically and independently of wall-clock time, this approach enables

 A SiL Testing Platform for OCPP-based EV Charging CSMSs 5

rapid testing under a wide range of conditions. It allows developers to evaluate

the scalability of their algorithms with potentially thousands of simulated

charging stations while focusing on application protocol correctness, message

handling, and algorithmic behavior.

• Wall-Clock-Time Execution. In this mode, the SiL testing environment simu-

lates real-world operating conditions by executing the CSMS as a standalone

system, separated from the simulation model. Communication occurs over a

network stack using OCPP 2.0.1, introducing realistic conditions such as con-

currency and asynchronous communication. The simulation runs in wall-clock

time, synchronized with system time, ensuring interactions mimic those of a

real deployed CSMS. This configuration enables evaluation of the CSMS's

performance, reliability, and robustness in handling real-world network con-

ditions.

The results from both configurations are compared as part of the back-to-back testing

process to ensure consistency and correctness. Discrepancies between the two modes

can reveal issues such as timing-related errors, protocol mismatches, or performance

bottlenecks, helping evaluate the system's readiness for deployment.

3.3 SiL Testing Platform Development

This paper applies the aforementioned SiL testing framework by developing a platform

to test a case study for EV smart charging strategies for residential home charging. The

aim of this platform is to demonstrate the utility of the SiL testing framework within an

energy ecosystem characterized by complex topologies and emergent behaviors, where

actors compete for access to a shared resource, namely the power grid.

The platform leverages an existing agent-based simulation model [16, 17] developed

in AnyLogic [18] which is connected to a management system using the OCPP 2.0.1

standard. The platform is described in more detail in the original case study [5]; in this

paper, it is presented in a condensed format.

4 Case Study

The case study involves EV smart charging for a residential area in Denmark. Smart

charging for EVs is an advanced approach to managing EV charging in a way that op-

timizes energy use, enhances grid stability, and aligns the driver’s charging preferences.

At its core, smart charging dynamically adjusts the charging rate of EVs based on real-

time grid conditions, electricity prices, and renewable energy availability to reduce both

costs and CO2 emissions. This flexibility enables efficient load management, reducing

loads on the power grid during peak demand periods through techniques like peak shav-

ing and demand response.

Denmark currently has 402.000 registered EVs (April 2025) [19] which corresponds

to about 17% of all domestic registered vehicles. With the current adoption rate the

number is expected to grow to 1 million EVs by 2030 [20]. EVs require installation of

charging infrastructure, and the number of charging stations (CSs) is expected to grow

proportionally to the number of EVs. A CS, also commonly known as a charge point,

6 C. Clausen et al.

is a power supply device that supplies electrical power for recharging plug-in electric

vehicles. The statistics of public available CSs are provided by the Danish Ministry of

Transport who reported around 11,000 public CSs in early 2023. A year later, primo

2024, the number almost doubled to 21,000 public CSs. By the end of 2024 the number

exceeded 31,000 CSs public [21]. Approximately 69 pct. of public CSs are normal

chargers (≤ 22 kW), 18 pct. are fast chargers (23-99 kW), and 13 pct. are rapid chargers

(≥ 100 kW). There are no official statistics on the number of installed private chargers

because Denmark has no legislation that requires it to be registered. This number can

be roughly estimated with the number of registered EVs. Assuming that 20–35% of EV

owners have a privately owned CS, the estimated number ranges between 80,400 and

140,700 CSs.

This estimated growth threatens the future power grid stability which is solved partly

by expanding the grid’s capacity and by utilizing the grid’s current capacity more in-

telligently. Intelligent coordination in smart charging algorithms utilizes the EV

owner’s charging flexibility to allocate power grid resources in a way that avoids peak

loads.

The behavior of smart charging algorithms is critical to test because dysfunctional

behavior can affect power grid customers. A SiL testing platform based on the SiL

testing framework is developed to verify smart charging and system behavior in realis-

tic scenarios to ensure correct behavior prior to hardware- and field testing.

5 Platform Design and Implementation

5.1 Requirements

The following requirements were derived through experimental prototyping and itera-

tive development.

• R1. Temporal Modality Support. The platform must support both discrete-

time and wall-clock time execution modes, enabling early-stage validation

with rapid feedback cycles and later-state verification under realistic temporal

constraints.

• R2. Interoperability. The platform must support standard application proto-

cols such as OCPP 2.0.1 to ensure realistic message exchange and compatibil-

ity with industry standards. This allows independently developed CSMSs to

coexist within a shared SiL testing environment, enabling holistic system-level

testing scenarios.

• R3. Abstracted Communication Layer. The platform must abstract parts of

the communication stack below the application protocol (e.g., transfer and

transport protocols). This enables validation at the application protocol level

without requiring the entire network stack, which reduces performance over-

head significantly.

• R4. Observability and Traceability. The platform must expose KPIs, for ex-

ample, protocol message logs and time synchronization metrics, to validate

and verify a given test scenario.

 A SiL Testing Platform for OCPP-based EV Charging CSMSs 7

5.2 Architecture

The SiL testing platform consists of the following principal components as shown in

Fig. 1. Each component is described below the figure.

Fig. 1. Architecture of the SiL testing platform.

Simulation Model. Developing a simulation model requires significant efforts, and

therefore, this study reuses a previously validated simulation model. This model was

developed by the author’s colleagues Kristoffer Christensen and Magnus Værbak [16,

17]. The simulation model contains logic for charging stations (CSs), electric vehicles

(EVs), households, utilities, and market actors. It is implemented as an agent-based

discrete event simulation in AnyLogic 8.8.3, based on a combined and validated model

of a Danish residential district with 126 households equipped with home charging sta-

tions. Key features include various agent types (e.g., EVs, CSs, transformers), config-

urable parameters (e.g., scenario duration, EV types, PVs, load profiles), and realistic

behavior based on empirical data (e.g., EV arrival patterns, charging preferences). The

model supports both traditional and real-time pricing strategies and enables execution

of short- and long-term test scenarios in discrete time. Output data includes KPIs such

as load profiles and charging behavior, are exported in 10-minute resolution for post-

analysis to satisfy R4 (Observability and Traceability). The model supports external

Java libraries by importing JAR files, enabling the model to integrate with CSMSs via

OCPP 2.0.1.

Communication Layer (OCPP 2.0.1). A custom communication layer was imple-

mented to enable SiL testing using the OCPP 2.0.1 protocol. It is developed in Java 11

for compatibility with AnyLogic 8.8.3 and facilitates interoperability between CSMSs

and the simulation model. The design decouples application logic from the underlying

transport (e.g., WebSocket over TCP/IP) via an abstracted communication API. This

abstraction allows test scenarios to be executed with or without a full network stack for

validation or verification purposes.

The communication layer comprises four packages: (i) schemas, which provides

auto-generated Java classes from the official OCPP 2.0.1 JSON schemas; (ii) rpc,

which defines CALL, CALLRESULT, and CALLERROR message types with JSON se-

rialization support for generic payloads; (iii) api, which defines high-level interfaces

(e.g., CsmsEndpoint, CsEndpoint, and Session) for implementing CSMS and

CS application logic; and (iv) impl, which contains the logic to expose endpoints by

establishing bidirectional gateways for message exchange over the underlying

transport. In practice, the connection between the simulation model in AnyLogic and

8 C. Clausen et al.

the CSMS software is realized by importing the compiled communication layer as JAR

libraries into the AnyLogic model, allowing simulation agents to call the provided Java

interfaces directly. Charging station agents implement the CsEndpoint interface,

while the CSMS implements the CsmsEndpoint interface. At runtime, a gateway

agent binds these interfaces, enabling OCPP 2.0.1 messages to flow bidirectionally be-

tween simulated CSs and the CSMS either in-memory (discrete-time mode) or over the

network (wall-clock mode). This design satisfies requirement R2 (Interoperability) and

R3 (Abstracted Communication Layer).

Time Management and Scheduling. To support SiL testing across both discrete and

wall-clock time domains, a time management and scheduling library was developed in

Java 11. The library introduces a temporal abstraction via a TimeProvider interface

with two implementations: DiscreteTimeProvider and WallClockTime-

Provider. This abstraction allows the same application logic in the CSMS to operate

without modification in different temporal modes, supporting both rapid- and real-time

execution. A custom scheduler complements the temporal abstraction by mode-aware

task execution. The scheduler is single-threaded and utilizes a priority queue to ensure

time-ordered and FIFO execution. Concretely, the scheduler is responsible for all time-

dependent tasks in the CSMS, including OCPP protocol timers (e.g., timeouts), sched-

uled charging events, and state-machine transitions. Tasks are executed strictly in in-

creasing timestamp order, with FIFO behavior in case tasks have the same timestamp.

In discrete-time mode, the scheduler advances according to the simulation clock, en-

suring deterministic and reproducible results independent of wall-clock speed. In wall-

clock mode, the scheduler synchronizes with the system clock, which in turn is syn-

chronized to wall-clock time via the Network Time Protocol (NTP). By providing a

scheduling abstraction, the library satisfies requirement R1 (Temporal Modality Sup-

port).

Charging Station Management System. The CSMS is implemented in Java 11 and

integrates application logic, communication endpoints, scheduling, and state manage-

ment to support OCPP 2.0.1-based scenarios. It implements the CsmsEndpoint in-

terface and manages per-session state using a structured map of session data objects.

Communication with each CS is facilitated through proxy objects of the CsEndpoint

interface. Charging strategies (e.g., traditional and real-time pricing) are encapsulated

and can be configured depending on a given scenario.

The implementation uses a pluggable scheduler that operates in either discrete or

wall-clock time, depending on the test mode. Stateful protocol interactions are modeled

using statecharts, enabling management of transactional OCPP use cases such as Smart

Charging (K15). Timed transitions are implemented via scheduled events, ensuring cor-

rect protocol sequencing and timeouts.

Charging Stations: Each CS is implemented as part of the AnyLogic 8.8.3 simulation

model and utilizes the OCPP 2.0.1 communication layer. Each CS implements the

CsEndpoint interface to handle incoming messages from its CSMS. Session bind-

ings are managed by a gateway agent, which maintains mappings between internal

 A SiL Testing Platform for OCPP-based EV Charging CSMSs 9

charging station agents and their corresponding CsmsEndpoint message forwarder

proxy instances.

5.3 Hardware and Deployment

The SiL testing platform is deployed on server-grade hardware and consists of the fol-

lowing hardware components: CPU: Intel Xeon Silver 4214, 12 cores, 24 threads, 2.20

GHz base clock, 3.20 GHz turbo RAM: 96 GB DDR4, 2400 MHz, ECC. Hard Drive:

128 GB, 13.4 MB/s (4K random write), 423 MB/s (1 MB sequential write), 498 MB/s

(1 GB sequential write). Read speeds are not reported as they are insignificant for the

application, which primarily performs write operations. Network: 1 Gbit/s full duplex

switched network. OS: Ubuntu 20.04.1 LTS. Deployment depends on the execution

mode. In discrete-time execution mode, each CSMS is deployed within the same Java

Virtual Machine as the AnyLogic model to exploit in-memory communication with

minimal overhead. In wall-clock execution mode, each CSMS and the AnyLogic model

are deployed in a distributed environment with separate Docker containers that com-

municate over a full TCP/IP stack to reflect realistic deployment conditions.

6 Scenario Design

6.1 OCPP 2.0.1 Use Case

The following OCPP 2.0.1 use case is implemented in the SiL testing platform for

demonstration purposes.

• K15 – Charging with load leveling based on High Level Communication

(Smart Charging) [22]: Tests the charging strategy as determined by the

CSMS.

6.2 Topology and EV Charging Strategies

The scenario is configured, as shown in Fig. 2, with two CSMSs that operate simulta-

neously and are configured in a one-to-many relationship with its provisioned CSs.

Each CSMS represents a CSO that manages a subset of 63 CSs (126 CSs in total) as

indicated by the simulation model configuration in Section 6.3. A CS is limited to

charging and connecting with a single EV at a time, thereby simulating a private home

charging setup.

Operator A employs a CSMS with a Traditional Charging Strategy that provides

unrestricted smart charging profiles to its managed CSs. With traditional charging, the

EV will charge as soon as it is plugged into the CS and continue charging until the

battery is full.

Operator B employs a CSMS with a Real-time Pricing Strategy that optimizes the

charging profile of each EV according to the preferred departure time, charging param-

eters, and hourly electricity spot prices. The EV and driver provide the departure time

and charging parameters to perform this optimization.

10 C. Clausen et al.

Fig. 2. The SiL testing topology featuring multiple CSMSs and CSs [5].

6.3 Simulation Model Configuration

The simulation model is treated as the tool responsible for simulating the entire envi-

ronment except for the CSMS. The model parameters and settings are listed in Table 1.

For a detailed description of each parameter, e.g. the driving distance model or EV

model, the reader is referred to the original work [16].

Table 1. Simulation Model Configuration [5].

Parameter Setting

Charging infrastructure Private home charging in Mode 3 [23]

Number of domestic consumers 126

Scenario start date 2024/01/01 00:00:00 UTC +1

Scenario end date 2024/01/08 00:00:00 UTC +1

Scenario duration 7 days

Maximum allowed number of EVs at

a domestic consumer

1

Maximum allowed number of CSs at a

domestic consumer

1

Domestic consumer baseload data Embedded in the simulation model’s dataset.

Based on real consumption data.

Total number of CSs 126. Each consumer has one installed.

Driving distance per trip Embedded in the simulation model’s dataset.

Generated based on a probability distribution.

First possible departure hour 05:00

Last possible departure hour 09:00

First possible arrival hour 14:00

Last possible arrival hour 22:00

 A SiL Testing Platform for OCPP-based EV Charging CSMSs 11

Parameter Setting

EV models Embedded in the simulation model’s dataset.

This includes battery capacity, charging power,

etc.

CS models Embedded in the simulation model’s dataset.

Number of electricity suppliers 1

Number of CS suppliers 1

EV charging strategy 50/50 split of:

63 consumers with Real-time pricing

63 consumers with Traditional charging

Total grid capacity (transformer capacity) 400 kVA

Household capacity 17.3 kVA

CS maximum charging capacity 11 kW (three phases, 400V, 16A)

Electricity costs model Embedded in the simulation model’s dataset.

Based on real hourly rates from Nord Pool spot

market (DK1) and the Danish Tariff model 3.0.

In discrete time execution mode, the simulation model is responsible for time synchro-

nization with the CSMS. In wall-clock-time execution mode, a custom feedback sched-

uling mechanism is implemented in AnyLogic to synchronize its virtual clock automat-

ically [5, 24]. The internal feedback scheduling mechanism relies on a Proportional-

Integral-Derivative (PID) controller that adjusts the simulation’s real-time scale, corre-

sponding to a virtual speeder, based on the model’s time drift. A timed event triggers

PID updates every 10 ms, balancing responsiveness with CPU load.

7 Results

This section presents the results of the two SiL test scenarios: discrete-time SiL and

wall-clock-time SiL. The Simulation KPIs are presented first followed by the ex-

changed OCPP 2.0.1 messages, and finally the SiL performance metrics.

7.1 Simulation Model KPIs

Fig. 3 illustrates the KPIs for EV charging behavior recorded during the SiL test, span-

ning from 00:00 on January 1st, 2024, to 00:00 on January 8th, 2024. The data is di-

vided into two groups. The first group represents consumers managed by the CSMS

following the traditional charging strategy, while the second group represents consum-

ers managed by the CSMS using the real-time pricing strategy. The raw electricity spot

price is included to reflect its impact on the number of EVs charging under the real-

time pricing strategy.

• Traditional charging strategy. This strategy charges each EV immediately

when the driver arrives home and plugs it into the CS during the daily period

from 14:00 to 01:00. The strategy charges each EV continuously until its bat-

tery is full, without considering the electricity spot price. This consistent

charging behavior is reflected in the plot across all days.

12 C. Clausen et al.

• Real-time pricing strategy. This strategy calculates the optimal charging

schedule for each EV based on the hourly electricity spot prices to minimize

total charging costs. It respects the EV driver’s expected departure time as a

constraint. The plot reveals this behavior through nightly surges in charging

activity, typically occurring between 23:00 and 05:00. Charging is scheduled

during hours with the lowest prices, leading to temporary pauses and later re-

sumptions when prices drop. This results in cost savings and is depicted in the

plot as midnight spikes in charging activity, followed by drops, and then

smaller surges during the night and early morning.

Fig. 3. KPIs for the EV charging behavior in the AnyLogic simulation model [5].

The two datasets were compared, and differences were found between the two datasets:

• Time-dependent KPIs. This analysis includes output variables calculated by

the simulation model as functions of time, such as the EV’s state-of-charge.

The resulting floating-point values showed insignificant discrepancies within

the range [0, 10−4]. These discrepancies arise from time differences inherent

in wall-clock SiL testing, where measurements are not perfectly synchronized,

unlike in discrete-time SiL testing. However, all remaining time-independent

KPIs were identical.

• Number of Charging EVs. This KPI measures the number of EVs charging at

a given time. On January 5th, 2024, at 15:50, the wall-clock SiL test recorded

one additional charging EV compared to the discrete-time SiL test. After ana-

lyzing this discrepancy with a simulation model developer, it was concluded

that the EV state-of-charge was identical in both tests. This behavior was iden-

tified as a bug in the measurement logging approach within the simulation

model.

In summary, the simulation KPIs from both discrete-time and wall-clock time SiL tests

exhibit similar EV charging behavior.

7.2 OCPP 2.0.1 Message Exchange

This section presents the results of the OCPP 2.0.1 messages exchanged during the

wall-clock time SiL test. In wall-clock execution, communication occurs over a full

TCP/IP stack, which makes it possible to observe network-related effects such as

 A SiL Testing Platform for OCPP-based EV Charging CSMSs 13

transmission delays, message reordering, and potential packet loss. In practice, no mes-

sage losses were observed under the tested conditions, but the platform can capture

them through protocol logs if they occur. A similar analysis was not conducted for the

discrete-time SiL test because, in this setup, OCPP 2.0.1 messages are exchanged di-

rectly in memory within the simulation environment, bypassing the TCP/IP stack en-

tirely.

Use Case: K15 – Smart Charging. Every EV in the simulation model is configured to

charge once a day. Once an EV is plugged in a CS the use case “K15” is activated, and

the CSMS sends a charging profile to the CS. Therefore, the expected number of ex-

changed charging profiles (𝑁𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔𝑝𝑟𝑜𝑓𝑖𝑙𝑒𝑠) is given by:

 𝑁𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔𝑝𝑟𝑜𝑓𝑖𝑙𝑒𝑠 = 𝑐 × 𝑑 = 126 × 7 = 882 (1)

where:

• 𝑐 = number of CSs,

• 𝑑 = number of days.

The collected data confirms that the expected number of SetChargingProfile-

Request and SetChargingProfileResponse were successfully exchanged

during the SiL test. While the raw dataset is not reproduced here, it is documented in

detail in [5]. This means that the stateful charging behavior is working as expected,

because a SetChargingProfileRequest is sent to a CS if, and only if, the state

transitions correctly.

Fig. 4 depicts the charging behavior of a sample CS managed by the Real-time Pric-

ing CSMS. The transaction state alternates between ‘Started’ and ‘Ended’, determined

by the payload of the TransactionEventRequest sent from the CS to the CSMS when

the charging cable is connected. The figure demonstrates that the CS charges the EV

multiple times within the same transaction, as indicated by fluctuations in the charging

load. The transaction state remains as ‘Started’ because the SiL test ended at midnight

between January 7th and January 8th.

Fig. 5 illustrates the charging behavior of a sample CS managed by the Traditional

Charging CSMS. As with Real-time Pricing, the transaction state alternates between

‘Started’ and ‘Ended’ based on the TransactionEventRequest payload. In this

case, the CS begins charging the EV immediately upon being plugged in by the driver

and stops when the EV's battery is fully charged. Consequently, the charging load aligns

directly with the ‘Started’ and ‘Ended’ transaction events, contrasting with the behavior

observed under Real-time Pricing.

14 C. Clausen et al.

Fig. 4. Transaction events with the Real-Time Pricing strategy [5].

Fig. 5. Transaction events with the Traditional Charging strategy [5].

7.3 SiL Execution Metrics

This section contains the results and analysis for the following SiL performance met-

rics:

• Simulation model time drift and real-time scale over time. These metrics evalu-

ate the performance of the PID controller agent described in Section 6.3. and its

robustness in synchronizing the simulation model with wall-clock time.

• Execution times of the discrete-time and wall-clock-time SiL tests. These meas-

urements provide a comparative assessment of the two SiL testing approaches.

Simulation Model Time Drift and Real-time Scale Over Time. The AnyLogic sim-

ulation model synchronizes wall-clock time using a PID controller to ensure consistent

timing behavior during execution. Fig. 6 illustrates the PID controller's behavior during

the startup phase of the simulation. Ideally, the time drift (𝑇𝑑𝑟𝑖𝑓𝑡) is 0, indicating perfect

synchronization between the simulation model and wall-clock time. If 𝑇𝑑𝑟𝑖𝑓𝑡 < 0, the

simulation model lags behind wall-clock time, whereas 𝑇𝑑𝑟𝑖𝑓𝑡 > 0 indicates the

 A SiL Testing Platform for OCPP-based EV Charging CSMSs 15

simulation model running ahead of it. At AnyLogic’s startup, 𝑇𝑑𝑟𝑖𝑓𝑡 initially drops be-

low -30,000 ms, even though the real-time scale (𝑅𝑇𝑠𝑐𝑎𝑙𝑒) is set to a maximum value of

10 times wall-clock time. This temporary desynchronization occurs due to the initiali-

zation of internal agents and AnyLogic's single-threaded computational model. After

this initialization phase, 𝑇𝑑𝑟𝑖𝑓𝑡 approaches 0. By approximately 33 seconds, the PID

controller adjusts 𝑅𝑇𝑠𝑐𝑎𝑙𝑒 to compensate for the drift, stabilizing 𝑇𝑑𝑟𝑖𝑓𝑡 at 0 and achiev-

ing synchronization.

Fig. 6. AnyLogic Simulation Model: Time-drift during the startup phase [5].

Fig. 7 depicts the behavior of 𝑇𝑑𝑟𝑖𝑓𝑡 and 𝑅𝑇𝑠𝑐𝑎𝑙𝑒 throughout the duration of the wall-

clock SiL test. Frequent positive and negative spikes in 𝑇𝑑𝑟𝑖𝑓𝑡 are observed, with the

PID controller dynamically adjusting 𝑅𝑇𝑠𝑐𝑎𝑙𝑒 to maintain synchronization between the

AnyLogic simulation model and wall-clock time. Despite significant negative spikes in

𝑇𝑑𝑟𝑖𝑓𝑡 , the PID controller demonstrates robustness, successfully preserving synchroni-

zation. The negative spikes in 𝑇𝑑𝑟𝑖𝑓𝑡 are likely caused by intensive computations or

discrete events within AnyLogic that temporarily delay the execution of other opera-

tions. Conversely, positive spikes may result from PID overshooting during corrective

adjustments.

Fig. 8 presents a histogram of the 𝑇𝑑𝑟𝑖𝑓𝑡 distribution, based on 20,049 observations

(𝑁𝑇𝑑𝑟𝑖𝑓𝑡
= 20,049). Notably, 97% of the observations fall within the range of ±3 ms,

with the remaining 3% outside this interval. This level of deviation is considered ac-

ceptable because the scenario does not have stringent time-critical requirements for the

wall-clock SiL test.

16 C. Clausen et al.

Fig. 7. AnyLogic Simulation Model: Time-drift and real-time scale [5].

Fig. 8. AnyLogic Simulation Model: Time drift distribution [5].

Execution times of the discrete-time and wall-clock-time SiL tests. Table 2 presents

the execution times for the discrete-time and wall-clock-time SiL tests. The discrete-

time SiL test completed the 7-day simulation scenario in 1 minute and 49 seconds. In

contrast, the wall-clock-time SiL test synchronizes its ticks with wall-clock time and

the scenario takes 7 days to execute.

The difference in execution times highlights a trade-off between SiL fidelity and

performance. Increasing the fidelity of the SiL test has a substantial impact on execution

time. However, the discrete-time SiL test offers significant advantages, as it enables the

testing of long-term scenarios in a fraction of the time required by wall-clock SiL tests.

The execution time of the wall-clock-time SiL test could potentially be reduced by

employing an accelerated wall-clock time provider from the time management frame-

work outlined in Section 5.2. However, this approach may necessitate tuning the PID

controller in the AnyLogic simulation model to accommodate the accelerated mode.

Additionally, the acceleration increases the frequency of exchanged OCPP 2.0.1

 A SiL Testing Platform for OCPP-based EV Charging CSMSs 17

messages, potentially leading to network congestion. Therefore, this approach should

be investigated in future studies.

Table 2. Execution times of the SiL tests [5].

Test Scenario Execution time

Discrete time 𝑇𝑠𝑡𝑎𝑟𝑡 = 2024/11/26 15:09:29

𝑇𝑒𝑛𝑑 = 2024/11/26 15:11:18

𝑇𝑡𝑜𝑡𝑎𝑙 = 𝑇𝑒𝑛𝑑 − 𝑇𝑠𝑡𝑎𝑟𝑡 = 1m 49s

Wall-clock time 𝑇𝑠𝑡𝑎𝑟𝑡 = 2024/11/26 17:55:16

𝑇𝑒𝑛𝑑 = 2024/12/03 17:55:19

𝑇𝑡𝑜𝑡𝑎𝑙 = 𝑇𝑒𝑛𝑑 − 𝑇𝑠𝑡𝑎𝑟𝑡 = 7d 0h 0m 3s

8 Discussion

The presented SiL testing platform successfully addresses several limitations identified

in the literature on validation and verification of EV CSMSs, particularly those relying

on the OCPP 2.0.1 protocol. The platform demonstrates practical utility in enabling

scenario-based testing across both discrete-time and wall-clock-time execution modes,

a feature absent in most existing SiL approaches in the energy domain.

From a functional perspective, the platform met its design requirements, including

support for dual temporal modalities (R1), interoperability with standardized protocols

(R2), abstracted communication layers (R3), and observability of system behavior

(R4). The use of an agent-based simulation environment integrated with real-world data

on electricity pricing and EV driving patterns provided a high degree of realism, facil-

itating meaningful performance evaluation.

In discrete-time mode, the platform enabled rapid testing and iteration of control

strategies, completing a 7-day simulation in under 2 minutes. This speed advantage is

particularly valuable for development workflows requiring frequent regression testing

or optimization across large parameter spaces. Wall-clock-time testing, while signifi-

cantly slower, offered high-fidelity evaluation of protocol-level behavior under realistic

timing and concurrency conditions. The successful back-to-back validation of control

logic across both modes confirms the platform’s capability to reuse the same CSMS

implementation without modification, which is critical for bridging development and

deployment workflows.

The message exchange analysis confirmed full protocol compliance, with correct

sequencing and successful transmission of OCPP 2.0.1 messages across 126 charging

stations. Minor discrepancies in state-of-charge values and charging EV counts be-

tween time modes were traced to the simulation model’s logging mechanisms rather

than flaws in the CSMS or communication layer, underlining the importance of robust

KPI instrumentation in simulation models.

While comparable platforms are scarce in academic literature, this work demon-

strates that the combination of standardized protocols and dual-time execution in SiL

testing is not only feasible but also essential for ensuring that smart charging systems

18 C. Clausen et al.

can scale reliably within real-world energy ecosystems. The findings imply that similar

approaches can be generalized to other domains involving DERs and protocol-driven

management software, including home energy management and microgrid systems.

9 Conclusion and Future Work

This paper introduced a standards-compliant, dual-mode SiL testing platform for vali-

dation and verification of OCPP 2.0.1-based EV CSMSs. The platform enables switch-

ing between discrete-time simulation for development and wall-clock-time execution

for high-fidelity verification, offering a consistent environment for testing smart charg-

ing strategies in a simulated residential setting.

The case study involving 126 private home charging stations in Denmark demon-

strated that the same CSMS logic could be tested across temporal domains, achieving

protocol integrity, scalability, and timing accuracy. Key performance results include

sub-2-minute execution for a 7-day scenario in discrete-time mode and minimal time

drift in wall-clock mode, with over 97% of observations within ±3 ms. This hybrid

testing approach enables efficient exploration of system behavior under both acceler-

ated and real-time constraints, thereby supporting more robust control software devel-

opment for EV infrastructure.

The main contribution of this work lies in operationalizing SiL testing with OCPP

2.0.1 compliance, showing that tested CSMS software can be transferred between test-

ing and deployment contexts. The platform also establishes a reusable methodology for

future research on SiL testing for energy management systems.

Acknowledgments. This paper is part of the Digital Energy Hub project, funded by the Danish

Industry Foundation, and IEA EBC Annex 96 - Grid Integrated Control of Buildings (EUDP no.

J.nr. 134251-549133).

Author Contributions. Based on the CRediT (Contributor Roles Taxonomy). CSBC: Concep-

tualization, methodology, software, formal analysis, investigation, writing - original draft, Writ-

ing – review & editing, visualization. BNJ: Supervision, writing- review and editing, project

administration. ZGM: Supervision, project administration, funding acquisition.

Conflict of Interests. The authors declare the following potential conflict of interest: BNJ serves

as General Co-chair and ZGM serves as Program Co-chair and Publication Chair of the ‘Energy

Informatics.Academy Conference 2025 (EI.A 2025)’. To avoid any bias, the paper review and

acceptance decision were handled independently of these authors’ conference roles.

Ethics Approval. Not applicable.

Data and Source Code Availability. Access may be granted upon request, subject to institu-

tional and project-specific policies.

 A SiL Testing Platform for OCPP-based EV Charging CSMSs 19

References

[1] (2020). COMMUNICATION FROM THE COMMISSION TO THE EUROPEAN

PARLIAMENT, THE COUNCIL, THE EUROPEAN ECONOMIC AND SOCIAL

COMMITTEE AND THE COMMITTEE OF THE REGIONS Powering a climate-

neutral economy: An EU Strategy for Energy System Integration. [Online] Available:

https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=COM:2020:299:FIN

[2] Open Charge Point Protocol (OCPP) 2.0.1, Open Charge Alliance, 2024. [Online].

Available: https://openchargealliance.org/my-oca/ocpp/

[3] C. S. B. Clausen, B. N. Jørgensen, and Z. G. Ma, "A scoping review of In-the-loop

paradigms in the energy sector focusing on software-in-the-loop," Energy Informatics,

Journal article vol. 7, no. 12, 2/27 2024, doi: 10.1186/s42162-024-00312-8.

[4] 1012-2024 - IEEE Standard for System, Software, and Hardware Verification and

Validation, 2025.

[5] C. S. B. Clausen, "A Software-in-the-loop Testing Framework for Energy Management

Systems," ed: Syddansk Universitet. Det Tekniske Fakultet, 2025.

[6] I. Raghupatruni, T. Goeppel, M. Atak, J. Bou, and T. Huber, "Empirical Testing of

Automotive Cyber-Physical Systems with Credible Software-in-the-Loop

Environments," International Conference on Connected Vehicles and Expo, 2019.

[7] M. A. Taut, G. Chindris, and A. C. Taut, "Software-in-the-Loop System for Motor

Control Algorithms," International Symposium for Design and Technology in

Electronic Packaging, pp. 419--426, 2019.

[8] B. A. M, Z. L, and A. M, "Software In the Loop Simulation for Robot Manipulators,"

ENGINEERING TECHNOLOGY AND APPLIED SCIENCE RESEARCH, vol. 7, no.

5, pp. 2017--2021, 2017.

[9] C. A. V. Guerrero et al., "A New Software-in-the-Loop Strategy for Real-Time Testing

of a Coordinated Volt/Var Control," pp. 6--10, 2016.

[10] C. A. V. Guerrero, P. M. Silveira, and J. M. C. Filho, "Adaptation of the clonal selection

algorithm to the real-time coordinated Volt/VAr control through a software-in-the-loop

strategy," Electric Power Systems Research, vol. 194, 2021, doi:

10.1016/j.epsr.2021.107092.

[11] F. a. Bonassi, "Software-in-the-loop testing of a distributed optimal scheduling strategy

for microgrids' aggregators," IEEE PES Innovative Smart Grid Technologies

Conference Europe, pp. 985--989, 2020.

[12] M. Huber, C. Bons, and D. Mueller, "Exergetic evaluation of solar controller using

Software-In-The-Loop method," Energy Procedia, vol. 48, pp. 850--857, 2014, doi:

10.1016/j.egypro.2014.02.098.

[13] H. T. Nguyen, G. Yang, A. H. Nielsen, and P. H. Jensen, "Hardware- and Software-in-

the-Loop Simulation for Parameterizing the Model and Control of Synchronous

Condensers," Ieee Transactions on Sustainable Energy, vol. 10, no. 3, pp. 1593--1602,

2019, doi: 10.1109/TSTE.2019.2913471.

[14] O. Frotscher et al., "Software-in-the-Loop-simulation of a District Heating System as

Test Environment for a Sophisticated Operating Software," pp. 223--230, 2019, doi:

10.5220/0007809602230230.

https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=COM:2020:299:FIN
https://openchargealliance.org/my-oca/ocpp/

20 C. Clausen et al.

[15] V. Osadcuks and A. Galins, "Software in the Loop Simulation of Autonomous Hybrid

Power System of an Agricultural Facility," Engineering for Rural Development, pp.

500--505, 2012.

[16] K. Christensen, "Multi-Agent Based Simulation Framework for Evaluating Digital

Energy Solutions and Adoption Strategies," Ph.D. thesis, Syddansk Universitet. Det

Tekniske Fakultet, 2022.

[17] M. Værbak, "Agent-Based Framework for Simulating Evolution of Distributed Energy

Resources in Energy Systems," ed: Syddansk Universitet. Det Tekniske Fakultet, 2022.

[18] A. Borshchev, The Big Book of Simulation Modeling: Multimethod Modeling with

AnyLogic 6. 2013.

[19] Danmarks Statistik. "Der er nu over 400.000 elbiler på de danske veje." Danmarks

Statistik. https://www.dst.dk/da/Statistik/nyheder-analyser-

publ/nyt/NytHtml?cid=49510 (accessed July 2025.

[20] Klimarådet, "Kendte veje og nye spor til 70 procents reduktion," 2020/03 2020.

[Online]. Available: https://klimaraadet.dk/sites/default/files/imorted-

file/70_pct_analyse_endelig.pdf

[21] The Danish Ministry of Transport, "Udvikling i ladeinfrastruktur og bestand af el- og

plug-in-hybridbiler," 2024. Accessed: January, 2025. [Online]. Available:

https://www.trm.dk/media/xw3dloqy/ladeinfrastruktur-og-opladelige-biler-1-kvartal-

2024-a.pdf

[22] Open Charge Alliance, "OCPP 2.0.1 Part 2: Specification (Edition 2)," p. 274, 2023.

[Online]. Available: https://openchargealliance.org/my-oca/ocpp/.

[23] DS/EN IEC 61851-1:2019 Electric Vehicle Conductive Charging System – Part 1:

General requirements, International Electrotechnical Commission, 2017. [Online].

Available: https://webshop.ds.dk/standard/M298491/ds-en-iec-61851-1-2019

[24] L. Sha et al., "Real Time Scheduling Theory: A Historical Perspective," Real-Time

Systems, vol. 28, pp. 101-155, 11/01 2004, doi:

10.1023/B:TIME.0000045315.61234.1e.

https://www.dst.dk/da/Statistik/nyheder-analyser-publ/nyt/NytHtml?cid=49510
https://www.dst.dk/da/Statistik/nyheder-analyser-publ/nyt/NytHtml?cid=49510
https://klimaraadet.dk/sites/default/files/imorted-file/70_pct_analyse_endelig.pdf
https://klimaraadet.dk/sites/default/files/imorted-file/70_pct_analyse_endelig.pdf
https://www.trm.dk/media/xw3dloqy/ladeinfrastruktur-og-opladelige-biler-1-kvartal-2024-a.pdf
https://www.trm.dk/media/xw3dloqy/ladeinfrastruktur-og-opladelige-biler-1-kvartal-2024-a.pdf
https://openchargealliance.org/my-oca/ocpp/
https://webshop.ds.dk/standard/M298491/ds-en-iec-61851-1-2019

