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Abstract. Digital twin technology has gained considerable traction in recent
years, with diverse applications spanning multiple sectors. However, due to the
inherent complexity and substantial costs associated with constructing digital
twins, systematic development methodologies are essential for fully capitalizing
on their benefits. Therefore, this paper firstly provides an exhaustive synthesis
of related literature, highlighting: (1) ten core advantages of implementing digi-
tal twin technology; (2) five primary domains in which digital twin applications
have been prevalently employed; and (3) ten principal objectives of digital twin
applications. Subsequently, we propose a seven-step digital twin application
development process, encompassing: (i) Digital Twin Purposing; (ii) Digital
Twin Scoping; (iii) Physical Twin Modeling; (iv) Calibration and Validation;
(v) Application Logic Development; (vi) External System Integration; and (vii)
Deployment and Operation. This structured approach aims to demystify the in-
trinsic complexity of twinned systems, ensuring that the deployment of digital
twin-based solutions effectively addresses the target problem while maximizing
the derived benefits.

Keywords: Digital Twin, Physical Twin, Twinning, Applications, Benefit,
Purpose, Development process.

1 Introduction

The concept of a digital twin is not new. The underpinning idea was first introduced
in David Gelernter's book Mirror Worlds in 1991 [1]. However, it is first two decades
later, at a Society of Manufacturing Engineers conference in Troy, Michigan, in 2002,
that Dr. Michael Grieves is credited with first publicly introducing the concept [2].
However, even though the concept emerged as early as 2002, the first practical defini-
tion is considered to originate from NASA, ten years later, in an attempt to improve
the physical-model simulation of spacecraft, defined it as: “A Digital Twin is an inte-
grated multi-physics, multiscale, probabilistic simulation of an as-built vehicle or
system that uses the best available physical models, sensor updates, fleet history, etc.,
to mirror the life of its corresponding flying twin.”[3].



Despite its early emergence in the 1990s and subsequent evolution throughout the
2000s, it is essential to understand the fundamental concept of a digital twin and what
problems it can help to solve before delving into the development of digital twin ap-
plications. In recent literature, the digital twin concept has evolved to be generally
understood as a digital representation of a real-world object, process, or system [4].
The real-world counterpart of a digital twin is referred to as its physical twin. Exam-
ples of physical twins include jet engines, wind turbines, buildings, factories, and
cities. The purpose of a digital twin is to serve as an indistinguishable digital repre-
sentation that accurately reflects its physical twin's observed structure, state, and be-
havior at a specified fidelity and frequency. Hence, a digital twin simulates the result-
ing state of the movements, forces, environment-to-system, and system-to-system
interactions that the physical twin experience in the physical world.

The development of digital twin applications is generally motivated by the purpose
of helping solve problems that are currently underserved by existing technologies.
The problems that digital twin applications typically can help to solve involve some
level of reflection over a physical twin's past, current, and future states. Such prob-
lems typically relate to performance monitoring, process optimization, system
maintenance, state estimation, scenario analysis, and similar purposes. Digital twins
are, therefore, often used to model, understand, and analyze complex systems where
the system's performance, reliability, and safety concerns are critical. In a digital twin
application, a physical twin is being observed in the physical world by instrumenting
its environment with various sensors that collect data about different operation as-
pects, such as temperature, pressure, vibration, duration, acceleration, velocity,
weight, and more, as illustrated in figure 1. This data is then used to update the digital
twin’s model of the physical twin. The digital twin application can store the collected
data for keeping a historical record, use it to reflect upon the current and future state
of the physical twin, and intervene in the operation of the physical twin if necessary.
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Fig 1. Conceptual model of the relation between a digital twin and its physical twin.

Due to the intrinsic complexity of the systems being twinned, the twinning process is
a costly undertaking requiring significant effort and time. To ensure this effort is
worthwhile the benefits of applying a digital twin-based approach to the problem at
hand must be properly investigated and understood. Hence, there is a need for estab-



lishing systematic development methodologies before the benefits of adopting digital
twin-based applications can be fully explored across the different sectors of society.

In this paper, we first review the benefits of digital twins and their applications in
different domains, and then we address the unmet challenges of providing a best prac-
tice development methodology for digital twin applications [4], by outlining the steps
of a development process that have successfully applied across several application
domains.

2 Benefits of Digital Twins

Many companies have started to create digital twins for their products, processes, and
systems because of the many benefits digital twins are promised to provide. Data
collected from existing products and production processes allow digital twins to effec-
tively identify systemic deficiencies, optimize processes, improve quality, and reduce
cost. Furthermore, a digital twin can use the same data to lower the environmental
footprint and production cost by co-optimizing the design of the following product
generation together with its production processes. In the virtual environment provided
by digital twins, engineers can effectively simulate real-world conditions, analyze
what-if scenarios under any circumstances imaginable, and visualize the outcomes.
Hence, digital twins help engineers to analyze and predict a physical twin's perfor-
mance under different operation conditions. As a result of this, helps engineers to
understand the past, view present conditions, and prevent future problems. In short,
digital twinning provide improved situation awareness, optimizes decision-making,
supports planning, and effective implementation of actions. Based on the statements
in the literature, ten primary benefits associated with the implementation of digital
twin technology can be summarized:

Efficiency enhancements: Digital twin frameworks can substantially reduce the effort
required to perform specific tasks, with up to 50% reduction in certain cases [5].
Moreover, they contribute to a decrease in downtime for manufacturing systems. For
instance, employing digital twins for grinding wheels results in a 14.4% increase in
energy and resource efficiency, thus promoting sustainable manufacturing processes
[6].

Increased adaptability: Digital twins facilitate small size production, catering to indi-
vidual customer needs and requirements [7]. Furthermore, they enable shorter produc-
tion cycles through the implementation of smart manufacturing systems, resulting in
agile and efficient operations [8].

Superior scheduling and decision-making: The bi-level dynamic scheduling architec-
ture, based on service unit digital twin agents, promotes more effective scheduling
practices [9]. By providing real-time monitoring, simulation, and decision-aid sys-
tems, digital twins support production operations, predictive maintenance, and strate-
gic planning initiatives [10, 11].

Process optimization and resource management: The integration of digital twin tech-
nology within remanufacturing processes leads to optimization and improvements in



resource recycling [6, 10]. Additionally, digital twins streamline inventory manage-
ment within physical internet hubs, enhancing operational efficiency [12].
Autonomous manufacturing capabilities: Digital twin frameworks, such as data- and
knowledge-driven models for digital twin manufacturing cells, foster intelligent per-
ception, simulation, understanding, prediction, optimization, and control strategies
that support autonomous manufacturing processes [13].

Advanced monitoring and control: Digital twins enable real-time monitoring of
maintenance, product quality, resource utilization, and overall efficiency [14]. Conse-
quently, this technology contributes to improved fleet management [15] and smart
building management practices [16].

Competitive edge and innovation: The adoption of digital twins equips enterprises
with innovative technologies that bolster their market position, enhance product quali-
ty, and improve operational efficiency [8, 17].

Sophisticated simulation and training: The use of digital twins in generating realistic
simulations for training purposes enriches the learning experience and reduces associ-
ated costs, thereby offering a more effective approach to skill development [18].
Secure and reliable data management:. The integration of blockchain technology
within digital twin systems ensures robust data integrity and security, safeguarding
valuable information across various industries [19, 20].

Customized production and sustainable business models: Combining digital twins,
blockchain, and additive manufacturing empowers organizations to adopt a customer-
centric production paradigm [19]. The utilization of digital twin platform networks
enables the development of sustainable business models that encompass economic,
social, and environmental benefits [6, 7, 17].

3 Digital Twin Applications

Digital twin technology has experienced rapid adoption across a diverse range of
industries, transforming processes and systems with innovative, data-driven solutions.
The domains which have popularly applied digital twin technology are manufactur-
ing, energy, buildings, smart cities, logistics and supply chains.

In manufacturing, digital twin technology has been applied across various sub-
domains, e.g., equipment design [21], manufacturing resource recommendation [22],
personalized production [19], manufacturing processes [23], and additive manufactur-
ing [24]. Digital twins are employed for purposes of monitoring [25], simulation [26],
analysis [27], control [28], optimization [21], defect detection [7], automation [29],
and continuous improvement [26]. They play a crucial role in Industry 4.0 develop-
ment, contributing to robustness, resilience, self-adaptation, real-time analysis, and
product detection.

In the energy sector, digital twin technology has been applied, e.g., electricity dis-
tribution networks [30], planning [31], and consumption management [32], etc. Digi-
tal twins have been applied to enhance the efficiency [33], optimization [34] and con-
trol [35], facilitate monitoring [32], prediction [36], device health maintenance [30],
real-time interaction [31], co-simulation and system performance validation [37].



In the building industry, Digital twin technology provides innovative solutions
across various sub-domains. It helps stakeholders make better decisions, improve
building performance, and facilitate efficient management of building assets. Applica-
tions include building embodied carbon estimation [38], building automation, energy
efficiency and occupant comfort [39], and building maintenance [40].

In smart cities, digital twin technology has been applied across various sub-
domains, including infrastructure [41], healthcare services [42], urban landscape
management [43], and facility venue management [44]. Each sub-domain leverages
digital twins for specific purposes, e.g., monitoring [45], prediction, optimization and
control [41], data analysis [42], visualization [43], security [46], and policy develop-
ment [41], contributing to more efficient, sustainable, and livable urban environments.

Furthermore, digital twin technology has made significant strides in logistics and
supply chains, enabling new approaches to monitoring, control, integration, and opti-
mization. These advancements have improved the resilience, efficiency, and sustaina-
bility of various sub-domains. Applications include supply chain control [47], produc-
tion logistics [48], city logistics [45], and supply chain optimization [49].

4 Digital Twin Application Development

A digital twin application is, in essence, a software system that uses real-world data
and digital models to predict how a physical twin will perform. To do so, it integrates
[oT, Big Data, and Al technologies. IoT and Big Data technologies are used for col-
lecting relevant data about the physical twin’s operational environment, and Al tech-
nologies are used to analyze the current and predict the future states of the physical
twin. The choice of specific technologies depends on the application domain where
the digital twin will be used.

A conceptual architectural model of a digital twin application with its constituent
elements is shown in Figure 2. These constituent elements form a recurring architec-
tural pattern that can be observed for the development of digital twin applications
across multiple domains.

The development of digital twin applications is a complex and multi-disciplinary
effort, involving experts from multiple fields, including engineering, computer sci-
ence, data science, and domain-specific experts. To support the effective development
of digital twin applications the development process has to be divided into a number
of steps. The decomposition of the development process into separate steps can be
done in different ways and will typically reflect the methodologies of the engineering
disciplines taking part in the digital twin development. Based on the authors’ observa-
tions from several industrial digital twin R&D projects [50, 51], mechanical engi-
neers, data scientists, and software engineers have different perspectives on how to
decompose the development of a digital twin. The steps proposed in this paper are
based on the authors’ practical experience from these R&D projects and are illustrated
in Figure 3.



Digital twin application

1004664010
ey
i . 0 ertormance . . £
Al function module O o _g.—’ /\/\/ Visualization
" goo iscrepancy
(4 1n1

001 101 —

predicted state observed and
observed state predicted states

‘ Observed and

Internal model \} predicted
of physical twin "’ predicted state states of the
* physical twin

physical twin’s ‘1;” “;\‘13 physical twin’s state
environment 5 o .
10117301D01 O 2
10f

Real-world
physical twin

Fig. 2. Example of a digital twin application for continuous energy performance monitoring of
a commercial greenhouse.
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Fig 3. Steps in the development of digital twin applications.
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Digital twin purposing: The first thing to address when starting a digital twin devel-
opment project is to clearly define the purpose of the digital twin application. What
unmet need will the digital twin application fulfill, that cannot simply be fulfilled by
using existing technologies. Is a digital twin the right solution; that is, is a digital rep-
lica of the physical twin essential to solve the problem at hand. What additional bene-
fits does a digital twin bring that cannot be achieved by existing technologies. How
are these benefits assessed and evaluated, and will the expected benefits justify the
development cost. First when these concerns have been considered a digital twin de-
velopment project should be initiated.

Digital twin scoping: The next step is to determine the scope of the digital twin. The
scope is defined by the boundary of the real-world object, process, or system being
twinned, and the purpose of developing the digital twin application. Ignoring the im-
portance of correct scoping may lead to undersized or oversized digital twins. That is,
the digital twin level of details does not match the required model fidelity for the
problem at hand. For instance, if the purpose is to predict the remaining lifetime of a
single fan in a building's ventilation system, the scope is defined by the boundary of



the mechanic fan and the process parameters affecting the fan’s operation conditions.
It is therefore not necessary to do detailed twinning of the whole building to meet the
purpose of the digital twin application. Due to the natural boundaries of the real-world
object, process, or system being twinned, digital twins typically materialize at one of
three levels: component, unit, and system. Each of these levels is described in Table 1
based on their general definitions in dictionaries of the English language.

Table 1. Scope of digital twins.

Component A component is a constituting functional part or element of a larger whole,
especially a part of a machine or vehicle. For example, the fan in a ventilator
unit or a joint in a robot arm.

Unit A unit is a single whole part of a system. For example, the ventilator unit in a
building’s ventilation system or a single robot in a manufacturing production
line.

System A system is a group of interacting or interrelated elements that act according to

a set of rules to form a unified whole. Hence, a system defines a way of work-
ing, organizing, or doing something which follows a fixed plan or set of rules.
A system, surrounded and influenced by its environment, is described by its
boundaries, structure and purpose and is expressed in its functioning. For ex-
ample, the ventilation system in a building or a manufacturing production line.

Depending on the application, digital twins can be created as hierarchical architec-
tures that a higher-level digital twin is created by composing digital twins at the lower
level, or they can be constructed as monolithic architecture at the respective level.

Physical twin modeling: This step focuses on creating the digital twin's internal
model of the physical twin. The internal model captures the behavior, attributes, and
relationships of the physical twin. This model can either be created using a specifica-
tion-driven or data-driven approach. A specification-driven approach uses relevant
design specifications to create a white- or grey-box model of the physical twin,
whereas a data-driven approach creates a black-box model based on historical data
collected from the physical twin and its environment. White- and grey-box modeling
require detailed design specifications of the physical twin, whereas black-box model-
ing requires big data for the external factors influencing the physical twin and the
behavioral response of the physical twin to these external factors. Depending on the
application domain such big data can be a large dataset for the production cycles of a
product in a manufacturing line, or it can be a large dataset spanning multiple years of
data collection, in the case where the behavior of the physical twin depends on exter-
nal factors such as seasonal weather changes. The latter is for instance the case for
digital twins of wind turbines [52], photovoltaic [53], buildings [51], and greenhouses
[54-56]. White- and grey-box modeling is typically used when the available data for a
physical twin is insufficient to create a black-box model, and black-box modeling is
used when the available design specifications are insufficient but there is sufficient
data. Deciding on the modeling approach; white box, grey box, or black box, depends
on what design specifications and data are and will be available. Making this decision
requires identifying the information and data sources, including sensors, control sys-
tems, and other sources of information, available for creating the digital twin’s inter-



nal model of the physical twin. It is the authors' experience that stakeholders often
overestimate what design specification and data they have. Hence, the choice of mod-
eling method should not be prematurely decided before the availability of design
specifications and data have been properly investigated.

Calibration and validation: The digital twin must be calibrated and validated to
ensure that it accurately represents the behavior of the physical twin. Calibration is
the process of fine-tuning the digital twin's model parameters to closely match the
behavior of the physical twin. It involves adjusting the parameters within the model
based on the data collected from the physical twin and its environment. For example,
if the digital twin of a greenhouse predicts its energy consumption to be higher than
the actual consumption, the model parameters need to be adjusted to better align with
the real-world data. This process may require multiple iterations to achieve a satisfac-
tory level of accuracy. After the calibration process, validation is carried out to ensure
that the digital twin's model can accurately predict the behavior of the physical twin
under various conditions. Validation is done by comparing the digital twin's predic-
tions to independent real-world data that was not used during the calibration process.
If the model's predictions closely align with the actual performance of the physical
twin, it is considered to be a valid representation of the physical twin.

Application logic development: Developing the logic of a digital twin application
requires the creation of an Al function module that encapsulates the application logic
required to fulfill its intended purpose. The Al function module leverages the internal
digital model of the physical twin, which serves as the foundation for implementing
various Al methods. These methods can include statistical analysis, machine learning,
deep learning, or agent-based simulation, among others [57]. The selection of an ap-
propriate Al method for implementing the Al function module depends on the specif-
ic purpose of the digital twin's development. Different applications may benefit from
distinct state-of-the-art methodologies that are best suited to address special challeng-
es and requirements of their use cases. For instance, a digital twin developed for pre-
dictive maintenance might employ machine learning algorithms to identify patterns
and anomalies in the sensor data, thereby enabling the early detection of potential
equipment failures. On the other hand, a digital twin for simulating the effect of elec-
tric vehicle charging on the stability of the electricity grid will benefit from agent-
based simulation, wherein individual agents represent diverse entities that interact and
adapt according to a set of predefined rules. Moreover, it is essential to consider the
type and volume of data available for training and validation when selecting an ap-
propriate Al method for the Al function module. While some approaches may require
large datasets to deliver accurate predictions, others might be more suitable for sce-
narios with limited data availability or noisy data. In addition to the Al function mod-
ule, most digital twin applications include a visualization component that shows rele-
vant information about the physical twin's historical, current, and predicted future
state. This visualization component provides actionable insights and supports deci-
sion-making.

External system integration: To achieve a successful integration of the digital twin
application in its deployment environment, it is important to comply with de jure and
de facto standards that can ensure interoperability between the digital twin and exist-



ing systems, such as PLC (Programmable Logic Controller), SCADA systems (Su-
pervisory control and data acquisition), IoT and Cloud platforms. These standards
facilitate consistent data exchange and communication protocols, enabling the digital
twin to access and process real-time data from diverse sources without compatibility
issues. Such standards can be industry-specific or based on general-purpose protocols,
such as OPC UA (Open Platform Communications Unified Architecture) and MQTT
(Message Queuing Telemetry Transport), which are widely employed in the Internet
of Things (IoT) domain.

Deployment and operation: Once a digital twin has been created and deployed in an
application, it must be continuously monitored and validated to ensure that it remains
accurate. Continuous validation is required as the physical twin may change, such as
wear and tear, modifications, replacements of components, or updates of its control
logic. These alterations can impact the system's performance and behavior, rendering
the digital twin's current model of the physical twin potentially outdated. It is there-
fore necessary to regularly assess the digital twin's accuracy in representing the physi-
cal twin, taking into account any changes that have occurred. When discrepancies are
identified, the digital twin's model parameters and algorithms must be updated to
reflect the new state of the physical twin.

5 Conclusions

The use of digital twins provides promising benefits in many application domains.
Digital twins enable better planning, decision-making, and situation awareness by
modeling and analyzing the past, present, and future states of physical systems across
various industries, such as manufacturing, energy, buildings, smart cities, and logis-
tics. Still, being an emerging technology, its successful adoption requires the devel-
opment of methodologies that enable best practices of architectural principles and
software technological advances to be shared across domains. This paper presented a
conceptual architectural model and development process based on the authors' own
experience from various industrial R&D projects. Future work will explore the archi-
tectural model and development process in greater detail to identify commonalities
and variabilities related to the application of digital twins in different domains.
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